Advertisement

Feasibility of Interferential and Pulsed Transcranial Electrical Stimulation for Neuromodulation at the Human Scale

      Objectives

      Transcranial electrical stimulation (tES) is a promising tool for modulating neural activity, but tES has poor penetrability and spatiotemporal resolution compared to invasive techniques like deep brain stimulation (DBS). Interferential strategies for alternating-current stimulation (IF-tACS) and pulsed/intersectional strategies for transcranial direct-current stimulation (IS-tDCS) address some of the limitations of tES, but the comparative advantages and disadvantages of these new techniques is not well understood. This study’s objective was to evaluate the suprathreshold and subthreshold membrane dynamics of neurons in response to IF-tACS and IS-tDCS.

      Materials and Methods

      We analyzed the biophysics of IF-tACS and IS-tDCS using a bioelectric field model of tES. Neural responses were quantified for suprathreshold generation of action potentials in axons and for subthreshold modulation of membrane dynamics in spiking pyramidal neurons.

      Results

      IF-tACS and IS-tDCS could not directly activate axons at or below 10 mA, but within this current range, these fields were able to modulate, albeit indirectly, spiking activity in the neuron model. IF-tACS facilitated phase synchronization similar to tACS, and IS-tDCS enhanced and suppressed spiking activity similar to tDCS; however, in either case, the modulatory effects of these fields were less potent than their standard counterparts at a matched field intensity. Moreover, neither IF-tACS nor IS-tDCS improved the spatial selectivity of their parent strategies.

      Conclusions

      Enhancing the spatiotemporal precision and penetrability of tES with interferential and intersectional strategies is possible at the human scale. However, IF-tACS or IS-tDCS will likely require spatial multiplexing with multiple simultaneous sources to counteract their reduced potency, compared to standard techniques, to maintain stimulation currents at tolerable levels.

      Keywords:

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Brunoni AR
        • Amadera J
        • Berbel B
        • Volz MS
        • Rizzerio BG
        • Fregni F
        A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation.
        Int J Neuropsychopharmacol. 2011; 14 (https://doi.org/10.1017/S1461145710001690.): 1133-1145
        • Bikson M
        • Grossman P
        • Thomas C
        • et al.
        Safety of transcranial direct current stimulation: evidence based update 2016.
        Brain Stimul. 2016; 9 (https://doi.org/10.1016/j.brs.2016.06.004.): 641-661
        • Matsumoto H
        • Ugawa Y
        Adverse events of tDCS and tACS: a review.
        Clin Neurophysiol Pract. 2017; 2 (https://doi.org/10.1016/j.cnp.2016.12.003.): 19-25
        • Datta A
        • Bansal V
        • Diaz J
        • Patel J
        • Reato D
        • Bikson M
        Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad.
        Brain Stimul. 2009; 2 (https://doi.org/10.1016/j.brs.2009.03.005.): 201-207.e1
        • Opitz A
        • Paulus W
        • Will S
        • Antunes A
        • Thielscher A
        Determinants of the electric field during transcranial direct current stimulation.
        Neuroimage. 2015; 109 (https://doi.org/10.1016/j.neuroimage.2015.01.033.): 140-150
        • Huang Y
        • Liu AA
        • Lafon B
        • et al.
        Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.
        eLife. 2017; 6 (https://doi.org/10.7554/eLife.18834.): e18834
        • Vöröslakos M
        • Takeuchi Y
        • Brinyiczki K
        • et al.
        Direct effects of transcranial electric stimulation on brain circuits in rats and humans.
        Nat Commun. 2018; 9 (https://doi.org/10.1038/s41467-018-02928-3.): 483
        • Liu A
        • Vöröslakos M
        • Kronberg G
        • et al.
        Immediate neurophysiological effects of transcranial electrical stimulation.
        Nat Commun. 2018; 9 (https://doi.org/10.1038/s41467-018-07233-7.): 5092
        • Krause MR
        • Vieira PG
        • Csorba BA
        • Pilly PK
        • Pack CC
        Transcranial alternating current stimulation entrains single-neuron activity in the primate brain.
        Proc Natl Acad Sci. 2019; 116 (https://doi.org/10.1073/pnas.1815958116.): 5747-5755
        • Nitsche MA
        • Paulus W
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527 (https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x.): 633-639
        • Stagg CJ
        • Nitsche MA
        Physiological basis of transcranial direct current stimulation.
        Neuroscientist. 2011; 17 (https://doi.org/10.1177/1073858410386614.): 37-53
        • Antal A
        • Boros K
        • Poreisz C
        • Chaieb L
        • Terney D
        • Paulus W
        Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans.
        Brain Stimul. 2008; 1 (https://doi.org/10.1016/j.brs.2007.10.001.): 97-105
        • Herrmann C
        • Rach S
        • Neuling T
        • Strüber D
        Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes.
        Front Hum Neurosci. 2013; 7 (https://doi.org/10.3389/fnhum.2013.00279.): 279
        • Bikson M
        • Inoue M
        • Akiyama H
        • et al.
        Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
        J Physiol. 2004; 557 (https://doi.org/10.1113/jphysiol.2003.055772.): 175-190
        • Creutzfeldt OD
        • Fromm GH
        • Kapp H
        Influence of transcortical d-c currents on cortical neuronal activity.
        Exp Neurol. 1962; 5 (https://doi.org/10.1016/0014-4886(62)90056-0.): 436-452
        • Boros K
        • Poreisz C
        • Münchau A
        • Paulus W
        • Nitsche MA
        Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans.
        Eur J Neurosci. 2008; 27 (https://doi.org/10.1111/j.1460-9568.2008.06090.x.): 1292-1300
        • Ardolino G
        • Bossi B
        • Barbieri S
        • Priori A
        Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain.
        J Physiol. 2005; 568 (https://doi.org/10.1113/jphysiol.2005.088310.): 653-663
        • Horvath JC
        • Carter O
        • Forte JD
        Transcranial direct current stimulation: five important issues we aren’t discussing (but probably should be).
        Front Syst Neurosci. 2014; 8 (2–2. https://doi.org/10.3389/fnsys.2014.00002.)
        • Yavari F
        • Nitsche MA
        • Ekhtiari H
        Transcranial electric stimulation for precision medicine: a spatiomechanistic framework.
        Front Hum Neurosci. 2017; 11 (https://doi.org/10.3389/fnhum.2017.00159.): 159
        • Radman T
        • Ramos RL
        • Brumberg JC
        • Bikson M
        Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro.
        Brain Stimul. 2009; 2 (https://doi.org/10.1016/j.brs.2009.03.007.): 215-228.e2283
        • Rawji V
        • Ciocca M
        • Zacharia A
        • et al.
        tDCS changes in motor excitability are specific to orientation of current flow.
        Brain Stimul Basic Transl Clin Res Neuromodulation. 2018; 11 (https://doi.org/10.1016/j.brs.2017.11.001.): 289-298
        • Reato D
        • Rahman A
        • Bikson M
        • Parra LC
        Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing.
        J Neurosci. 2010; 30 (https://doi.org/10.1523/JNEUROSCI.2059-10.2010.): 15067-15079
        • Grossman N
        • Bono D
        • Dedic N
        • et al.
        Noninvasive deep brain stimulation via temporally interfering electric fields.
        Cell. 2017; 169 (https://doi.org/10.1016/j.cell.2017.05.024.): 1029-1041.e16
        • Buzsaki G
        Large-scale recording of neuronal ensembles.
        Nat Neurosci. 2004; 7 (https://doi.org/10.1038/nn1233.): 446-451
        • Chakraborty D
        • Kaphzan H
        • Truong DQ
        • Bikson M
        Neuromodulation of axon terminals.
        Cereb Cortex. 2017; 28 (https://doi.org/10.1093/cercor/bhx158.): 2786-2794
        • McIntyre CC
        • Grill WM
        • Sherman DL
        • Thakor NV
        Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
        J Neurophysiol. 2004; 91 (https://doi.org/10.1152/jn.00989.2003.): 1457-1469
        • McIntyre CC
        • Richardson AG
        • Grill WM
        Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle.
        J Neurophysiol. 2002; 87: 995-1006
        • Howell B
        • McIntyre CC
        Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
        J Neural Eng. 2016; 13 (https://doi.org/10.1088/1741-2560/13/3/036023.): 036023
        • Aspart F
        • Ladenbauer J
        • Obermayer K
        Extending integrate-and-fire model neurons to account for the effects of weak electric fields and input filtering mediated by the dendrite.
        PLoS Comput Biol. 2016; 12 (https://doi.org/10.1371/journal.pcbi.1005206.): e1005206
        • Rampersad S
        • Roig-Solvas B
        • Yarossi M
        • et al.
        Prospects for transcranial temporal interference stimulation in humans: a computational study.
        Neuroimage. 2019; 202 (https://doi.org/10.1016/j.neuroimage.2019.116124.): 116124
        • Negahbani E
        • Kasten FH
        • Herrmann CS
        • Fröhlich F
        Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.
        Neuroimage. 2018; 173 (https://doi.org/10.1016/j.neuroimage.2018.02.005.): 3-12
        • Kunz P
        • Antal A
        • Hewitt M
        • Neef A
        • Opitz A
        • Paulus W
        5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern.
        Front Hum Neurosci. 2017; 10 (https://doi.org/10.3389/fnhum.2016.00683.): 683
        • Chaieb L
        • Antal A
        • Pisoni A
        • et al.
        Safety of 5 kHz tACS.
        Brain Stimul Basic Transl Clin Res Neuromodulation. 2014; 7 (https://doi.org/10.1016/j.brs.2013.08.004.): 92-96
        • Turi Z
        • Ambrus GG
        • Janacsek K
        • et al.
        Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
        Restor Neurol Neurosci. 2013; 31 (https://doi.org/10.3233/RNN-120297.): 275-285
        • Huang Y
        • Parra LC
        Can transcranial electric stimulation with multiple electrodes reach deep targets?.
        Brain Stimul Basic Transl Clin Res Neuromodulation. 2019; 12 (https://doi.org/10.1016/j.brs.2018.09.010.): 30-40
        • Cao J
        • Grover P
        STIMULUS: noninvasive dynamic patterns of Neurostimulation using Spatio-temporal interference.
        IEEE Trans Biomed Eng. 2019; 67 (1–1, 737 https://doi.org/10.1109/TBME.2019.2919912.)
        • Robinson AK
        • Venkatesh P
        • Boring MJ
        • Tarr MJ
        • Grover P
        • Behrmann M
        Very high density EEG elucidates spatiotemporal aspects of early visual processing.
        Sci Rep. 2017; 7 (https://doi.org/10.1038/s41598-017-16377-3.): 16248
        • Peterchev AV
        • Luber B
        • Westin GG
        • Lisanby SH
        Pulse width affects scalp sensation of transcranial magnetic stimulation.
        Brain Stimul. 2017; 10 (https://doi.org/10.1016/j.brs.2016.09.007.): 99-105
        • Deans JK
        • Powell AD
        • Jefferys JGR
        Sensitivity of coherent oscillations in rat hippocampus to AC electric fields.
        J Physiol. 2007; 583 (https://doi.org/10.1113/jphysiol.2007.137711.): 555-565
        • Howell B
        • McIntyre CC
        Role of soft-tissue heterogeneity in computational models of deep brain stimulation.
        Brain Stimul. 2017; 10 (https://doi.org/10.1016/j.brs.2016.09.001.): 46-50
        • Anderson RW
        • Farokhniaee A
        • Gunalan K
        • Howell B
        • McIntyre CC
        Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation.
        Brain Stimul. 2018; 11 (https://doi.org/10.1016/j.brs.2018.05.008.): 1140-1150
        • Das S
        • Holland P
        • Frens MA
        • Donchin O
        Impact of transcranial direct current stimulation (tDCS) on neuronal functions.
        Front Neurosci. 2016; 10 (550–550. https://doi.org/10.3389/fnins.2016.00550.)
        • Keeser D
        • Meindl T
        • Bor J
        • et al.
        Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI.
        J Neurosci. 2011; 31 (https://doi.org/10.1523/JNEUROSCI.0542-11.2011.): 15284-15293
        • Reed T
        • Cohen KR
        Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity.
        J Inherit Metab Dis. 2018; 41 (https://doi.org/10.1007/s10545-018-0181-4.): 1123-1130