Advertisement

Endoscopic Lateral Approach for Dorsal Root Ganglion Burst Stimulation: Technical Note and Illustrative Case Series

Published:February 12, 2022DOI:https://doi.org/10.1016/j.neurom.2021.10.022

      Abstract

      Introduction

      Dorsal root ganglion (DRG) stimulation demonstrated superiority over traditional spinal cord stimulation with better pain relief and greater improvement of quality of life. However, leads specifically designed for DRG stimulation are difficult to implant in patients who previously underwent spinal surgery and show epidural scarring at the desired site of implantation because of the reduced stiffness of the lead. Nevertheless, recurrent leg or arm pain after spinal surgery usually manifests as a single level radiculopathy, which should theoretically be amenable to DRG stimulation.

      Materials and Methods

      We present the percutaneous transforaminal placement of cylindrical leads through a lateral endoscopic approach for DRG stimulation in burst mode.

      Results

      We could successfully show that percutaneous transforaminal lead placement is feasible in three illustrative cases.

      Conclusion

      This technical note combines two innovations, one linked to the other. The first innovation involves a novel endoscopic lateral transforaminal approach to insert a cylindrical lead to the DRG. Because this electrode is compatible with burst stimulation-enabled devices, a second innovation consists of the application of burst stimulation on the DRG.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Deer T.
        • Pope J.
        • Benyamin R.
        • et al.
        Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin.
        Neuromodulation. 2016; 19: 91-100https://doi.org/10.1111/ner.12381
        • Deer T.R.
        • Levy R.M.
        • Kramer J.
        • et al.
        Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial.
        Pain. 2017; 158: 669-681https://doi.org/10.1097/j.pain.0000000000000814
        • Al-Kaisy A.
        • Royds J.
        • Costanzi M.
        • et al.
        Effectiveness of “transgrade” epidural technique for dorsal root ganglion stimulation. A retrospective, single-center, case series for chronic focal neuropathic pain.
        Pain Physician. 2019; 22: 601-611
        • Chapman K.B.
        • Ramsook R.R.
        • Groenen P.S.
        • Vissers K.C.
        • van Helmond N.
        Lumbar transgrade dorsal root ganglion stimulation lead placement in patients with post-surgical anatomical changes: a technical note.
        Pain Pract. 2020; 20: 399-404https://doi.org/10.1111/papr.12859
        • Chapman K.B.
        • Nagrani S.
        • Patel K.V.
        • Yousef T.
        • van Helmond N.
        Lumbar dorsal root ganglion stimulation lead placement using an outside-in technique in 4 patients with failed back surgery syndrome: a case series.
        A A Pract. 2020; 14e01300https://doi.org/10.1213/XAA.0000000000001300
        • Horan M.
        • Jacobsen A.H.
        • Scherer C.
        • et al.
        Complications and effects of dorsal root ganglion stimulation in the treatment of chronic neuropathic pain: a nationwide cohort study in Denmark.
        Neuromodulation. 2021; 24: 729-737https://doi.org/10.1111/ner.13171
        • Huygen F.J.P.M.
        • Kallewaard J.W.
        • Nijhuis H.
        • et al.
        Effectiveness and safety of dorsal root ganglion stimulation for the treatment of chronic pain: a pooled analysis.
        Neuromodulation. 2020; 23: 213-221https://doi.org/10.1111/ner.13074
        • Chakravarthy K.
        • Malayil R.
        • Kirketeig T.
        • Deer T.
        Burst spinal cord stimulation: a systematic review and pooled analysis of real-world evidence and outcomes data.
        Pain Med. 2019; 20: S47-S57https://doi.org/10.1093/pm/pnz046
      1. Schu S, Slotty PJ, Bara G, von Knop M, Edgar D, Vesper J. Burst or tonic stimulation? First results of a placebo controlled, doubled blinded, randomized study for the treatment of FBSS patients. Paper presented at: NANS; 2013; Las Vegas, USA.

        • De Ridder D.
        • Plazier M.
        • Kamerling N.
        • Menovsky T.
        • Vanneste S.
        Burst spinal cord stimulation for limb and back pain.
        World Neurosurg. 2013; 80: 642-649.e1https://doi.org/10.1016/j.wneu.2013.01.040
        • Deer T.
        • Slavin K.V.
        • Amirdelfan K.
        • et al.
        Success using neuromodulation with BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform.
        Neuromodulation. 2018; 21: 56-66https://doi.org/10.1111/ner.12698
        • Chakravarthy K.
        • Fishman M.A.
        • Zuidema X.
        • Hunter C.W.
        • Levy R.
        Mechanism of action in burst spinal cord stimulation: review and recent advances.
        Pain Med. 2019; 20: S13-S22https://doi.org/10.1093/pm/pnz073
        • De Ridder D.
        • Vanneste S.
        Burst and tonic spinal cord stimulation: different and common brain mechanisms.
        Neuromodulation. 2016; 19: 47-59https://doi.org/10.1111/ner.12368
        • Yearwood T.
        • De Ridder D.
        • Yoo H.B.
        • et al.
        Comparison of neural activity in chronic pain patients during tonic and burst spinal cord stimulation using fluorodeoxyglucose positron emission tomography.
        Neuromodulation. 2020; 23: 56-63https://doi.org/10.1111/ner.12960
        • Kim M.J.
        • Lee S.H.
        • Jung E.S.
        • et al.
        Targeted percutaneous transforaminal endoscopic diskectomy in 295 patients: comparison with results of microscopic diskectomy.
        Surg Neurol. 2007; 68: 623-631https://doi.org/10.1016/j.surneu.2006.12.051
        • Melzack R.
        • Wall P.D.
        Pain mechanisms: a new theory.
        Science. 1965; 150: 971-979https://doi.org/10.1126/science.150.3699.971
        • De Ridder D.
        • Vanneste S.
        • Plazier M.
        • van der Loo E.
        • Menovsky T.
        Burst spinal cord stimulation: toward paresthesia-free pain suppression.
        Neurosurgery. 2010; 66: 986-990https://doi.org/10.1227/01.NEU.0000368153.44883.B3
        • Moens M.
        • Sunaert S.
        • Mariën P.
        • et al.
        Spinal cord stimulation modulates cerebral function: an fMRI study.
        Neuroradiology. 2012; 54: 1399-1407https://doi.org/10.1007/s00234-012-1087-8
        • De Ridder D.
        • Vanneste S.
        • Plazier M.
        • Vancamp T.
        Mimicking the brain: evaluation of St Jude Medical’s Prodigy Chronic Pain System with Burst Technology.
        Expert Rev Med Devices. 2015; 12: 143-150https://doi.org/10.1586/17434440.2015.985652
        • Sherman S.M.
        A wake-up call from the thalamus.
        Nat Neurosci. 2001; 4: 344-346https://doi.org/10.1038/85973
        • Sherman S.M.
        Tonic and burst firing: dual modes of thalamocortical relay.
        Trends Neurosci. 2001; 24: 122-126https://doi.org/10.1016/s0166-2236(00)01714-8
        • Kirketeig T.
        • Schultheis C.
        • Zuidema X.
        • Hunter C.W.
        • Deer T.
        Burst spinal cord stimulation: a clinical review.
        Pain Med. 2019; 20: S31-S40https://doi.org/10.1093/pm/pnz003
        • Schu S.
        • Slotty P.J.
        • Bara G.
        • von Knop M.
        • Edgar D.
        • Vesper J.
        A prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome.
        Neuromodulation. 2014; 17: 443-450https://doi.org/10.1111/ner.12197
        • De Ridder D.
        • Lenders M.W.P.M.
        • De Vos C.C.
        • et al.
        A 2-center comparative study on tonic versus burst spinal cord stimulation: amount of responders and amount of pain suppression.
        Clin J Pain. 2015; 31: 433-437https://doi.org/10.1097/AJP.0000000000000129
        • de Vos C.C.
        • Bom M.J.
        • Vanneste S.
        • Lenders M.W.P.M.
        • de Ridder D.
        Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy.
        Neuromodulation. 2014; 17: 152-159https://doi.org/10.1111/ner.12116
        • Van Havenbergh T.
        • Vancamp T.
        • Van Looy P.
        • Vanneste S.
        • De Ridder D.
        Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation.
        Neuromodulation. 2015; 18 ({discussion: 12}): 9-12
        • Courtney P.
        • Espinet A.
        • Mitchell B.
        • et al.
        Improved pain relief with burst spinal cord stimulation for two weeks in patients using tonic stimulation: results from a small clinical study.
        Neuromodulation. 2015; 18: 361-366https://doi.org/10.1111/ner.12294
        • Kobayashi R.
        • Kenji S.
        • Taketomi A.
        • Murakami H.
        • Ono K.
        • Otake H.
        New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease.
        Parkinsonism Relat Disord. 2018; 57: 82-83https://doi.org/10.1016/j.parkreldis.2018.07.002
        • Mazzone P.
        • Viselli F.
        • Ferraina S.
        • et al.
        High cervical spinal cord stimulation: a one year follow-up study on motor and non-motor functions in Parkinson’s disease.
        Brain Sci. 2019; 9https://doi.org/10.3390/brainsci9040078
        • De Ridder D.
        • Vanneste S.
        Multitarget surgical neuromodulation: combined C2 and auditory cortex implantation for tinnitus.
        Neurosci Lett. 2015; 591: 202-206https://doi.org/10.1016/j.neulet.2015.02.034
        • De Ridder D.
        • Vanneste S.
        • Kovacs S.
        • et al.
        Transcranial magnetic stimulation and extradural electrodes implanted on secondary auditory cortex for tinnitus suppression.
        J Neurosurg. 2011; 114: 903-911https://doi.org/10.3171/2010.11.JNS10197
        • De Ridder D.
        • Vanneste S.
        • van der Loo E.
        • Plazier M.
        • Menovsky T.
        • van de Heyning P.
        Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression.
        J Neurosurg. 2010; 112: 1289-1294https://doi.org/10.3171/2009.10.JNS09298
        • De Ridder D.
        • Vanneste S.
        • Van Laere K.
        • Menovsky T.
        Chasing map plasticity in neuropathic pain.
        World Neurosurg. 2013; 80: 901.e1-901.e5https://doi.org/10.1016/j.wneu.2012.12.009
        • De Ridder D.
        • Joos K.
        • Vanneste S.
        Anterior cingulate implants for tinnitus: report of 2 cases.
        J Neurosurg. 2016; 124: 893-901https://doi.org/10.3171/2015.3.JNS142880
        • De Ridder D.
        • Manning P.
        • Glue P.
        • Cape G.
        • Langguth B.
        • Vanneste S.
        Anterior cingulate implant for alcohol dependence: case report.
        Neurosurgery. 2016; 78: E883-E893https://doi.org/10.1227/NEU.0000000000001248
        • De Ridder D.
        • Leong S.L.
        • Manning P.
        • Vanneste S.
        • Glue P.
        Anterior cingulate implant for obsessive-compulsive disorder.
        World Neurosurg. 2017; 97 (754.e7–754.e16)
        • De Ridder D.
        • Vanneste S.
        • Plazier M.
        • et al.
        Dorsolateral prefrontal cortex transcranial magnetic stimulation and electrode implant for intractable tinnitus.
        World Neurosurg. 2012; 77: 778-784https://doi.org/10.1016/j.wneu.2011.09.009
        • De Ridder D.
        • Plazier M.
        • Menovsky T.
        • Kamerling N.
        • Vanneste S.
        C2 subcutaneous stimulation for failed back surgery syndrome: a case report.
        Neuromodulation. 2013; 16: 610-613https://doi.org/10.1111/j.1525-1403.2012.00518.x
        • De Ridder D.
        • Vanneste S.
        • Menovsky T.
        • Langguth B.
        Surgical brain modulation for tinnitus: the past, present and future.
        J Neurosurg Sci. 2012; 56: 323-340
        • Garcia-Ortega R.
        • Edwards T.
        • Moir L.
        • Aziz T.Z.
        • Green A.L.
        • FitzGerald J.J.
        Burst occipital nerve stimulation for chronic migraine and chronic cluster headache.
        Neuromodulation. 2019; 22: 638-644
        • Manning A.
        • Ortega R.G.
        • Moir L.
        • et al.
        Burst or conventional peripheral nerve field stimulation for treatment of neuropathic facial pain.
        Neuromodulation. 2019; 22: 645-652
        • Amir R.
        • Michaelis M.
        • Devor M.
        Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained by depolarizing afterpotentials.
        J Neurosci. 2002; 22: 1187-1198
        • Al-Kaisy A.
        • Baranidharan G.
        • Palmisani S.
        • et al.
        Comparison of paresthesia mapping to anatomical placement in burst spinal cord stimulation: initial trial results of the prospective, multicenter, randomized, double-blinded, crossover, CRISP study.
        Neuromodulation. 2020; 23: 613-619https://doi.org/10.1111/ner.13104

      Comments