Advertisement
Basic Research| Volume 26, ISSUE 3, P589-600, April 2023

Download started.

Ok

Transauricular Vagal Nerve Stimulation at 40 Hz Inhibits Hippocampal P2X7R/NLRP3/Caspase-1 Signaling and Improves Spatial Learning and Memory in 6-Month-Old APP/PS1 Mice

      Abstract

      Objectives

      Transauricular vagal nerve stimulation (taVNS) at 40 Hz attenuates hippocampal amyloid load in 6-month-old amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, but it is unclear whether 40-Hz taVNS can improve cognition in these mice. Moreover, the underlying mechanisms are still unclear.

      Materials and Methods

      6-month-old C57BL/6 (wild type [WT]) and APP/PS1 mice were subjected to 40-Hz taVNS. Novel Object Recognition and the Morris Water Maze were used to evaluate cognition. Hippocampal amyloid-β (Aβ)1-40, Aβ1-42, pro–interleukin (IL)-1β, and pro–IL-18 were measured using enzyme-linked immunosorbent assays. Hippocampal Aβ42, purinergic 2X7 receptor (P2X7R), nucleotide-binding oligomerization domain–like receptor pyrin domain containing 3 (NLRP3), Caspase-1, IL-1β, and IL-18 expression were evaluated by western blotting. Histologic assessments including immunofluorescence, immunohistochemistry, Nissl staining, and Congo red staining were used to assess microglial phagocytosis, neuroprotective effects, and Aβ plaque load.

      Results

      40-Hz taVNS improved spatial memory and learning in 6-month-old APP/PS1 mice but did not affect recognition memory. There were no effects on the cognitive behaviors of 6-month-old WT mice. taVNS at 40 Hz modulated microglia; significantly decreased levels of Aβ1-40, Aβ1-42, pro–IL-1β, and pro–IL-18; inhibited Aβ42, P2X7R, NLRP3, Caspase-1, IL-1β, and IL-18 expression; reduced Aβ deposits; and had neuroprotective effects in the hippocampus of 6-month-old APP/PS1 mice. These changes were not observed in 6-month-old WT mice.

      Conclusion

      Our results show that 40-Hz taVNS inhibits the hippocampal P2X7R/NLRP3/Caspase-1 signaling and improves spatial learning and memory in 6-month-old APP/PS1 mice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leng F.
        • Edison P.
        Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?.
        Nat Rev Neurol. 2021; 17: 157-172
        • McKhann G.M.
        • Knopman D.S.
        • Chertkow H.
        • et al.
        The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 263-269
        • Canady V.A.
        FDA approves first drug therapy for Alzheimer’s in 18 years.
        Ment Health Wkly. 2021; 31: 3-4
        • Karlawish J.
        • Grill J.D.
        The approval of Aduhelm risks eroding public trust in Alzheimer research and the FDA.
        Nat Rev Neurol. 2021; 17: 523-524
        • Kaniusas E.
        • Kampusch S.
        • Tittgemeyer M.
        • et al.
        Current directions in the auricular vagus nerve stimulation I — a physiological perspective.
        Front Neurosci. 2019; 13: 854
        • Wang Y.
        • Li S.Y.
        • Wang D.
        • et al.
        Transcutaneous auricular vagus nerve stimulation: from concept to application.
        Neurosci Bull. 2021; 37: 853-862
        • Kaniusas E.
        • Kampusch S.
        • Tittgemeyer M.
        • et al.
        Current directions in the auricular vagus nerve stimulation II — an engineering perspective.
        Front Neurosci. 2019; 13: 772
        • Sjögren M.J.
        • Hellström P.T.
        • Jonsson M.A.
        • Runnerstam M.
        • Silander H.C.
        • Ben-Menachem E.
        Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: a pilot study.
        J Clin Psychiatry. 2002; 63: 972-980
        • Merrill C.A.
        • Jonsson M.A.
        • Minthon L.
        • et al.
        Vagus nerve stimulation in patients with Alzheimer’s disease: additional follow-up results of a pilot study through 1 year.
        J Clin Psychiatry. 2006; 67: 1171-1178
        • Kaczmarczyk R.
        • Tejera D.
        • Simon B.J.
        • Heneka M.T.
        Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease.
        J Neurochem. 2018; 146: 76-85
        • He W.
        • Wang X.
        • Shi H.
        • et al.
        Auricular acupuncture and vagal regulation.
        Evid Based Complement Alternat Med. 2012; 2012786839
        • Ventureyra E.C.
        Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept.
        Childs Nerv Syst. 2000; 16: 101-102
        • Badran B.W.
        • Dowdle L.T.
        • Mithoefer O.J.
        • et al.
        Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review.
        Brain Stimul. 2018; 11: 492-500
        • Thompson S.L.
        • O’Leary G.H.
        • Austelle C.W.
        • et al.
        A review of parameter settings for invasive and non-invasive vagus nerve stimulation (VNS) applied in neurological and psychiatric disorders.
        Front Neurosci. 2021; 15: 709436
        • Martorell A.J.
        • Paulson A.L.
        • Suk H.J.
        • et al.
        Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition.
        Cell. 2019; 177: 256-271.e22
        • Adaikkan C.
        • Middleton S.J.
        • Marco A.
        • et al.
        Gamma entrainment binds higher-order brain regions and offers neuroprotection.
        Neuron. 2019; 102: 929-943.e8
        • Iaccarino H.F.
        • Singer A.C.
        • Martorell A.J.
        • et al.
        Gamma frequency entrainment attenuates amyloid load and modifies microglia.
        Nature. 2016; 540: 230-235
        • Adaikkan C.
        • Tsai L.H.
        Gamma entrainment: impact on neurocircuits, glia, and therapeutic opportunities.
        Trends Neurosci. 2020; 43: 24-41
        • Park M.
        • Hoang G.M.
        • Nguyen T.
        • et al.
        Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice.
        Transl Neurodegener. 2021; 10: 48
        • Schachter S.C.
        • Saper C.B.
        Vagus nerve stimulation.
        Epilepsia. 1998; 39: 677-686
        • Ter Horst G.J.
        • De Boer P.
        • Luiten P.G.
        • Van Willigen J.D.
        Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat.
        Neuroscience. 1989; 31: 785-797
        • Ricardo J.A.
        • Koh E.T.
        Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat.
        Brain Res. 1978; 153: 1-26
        • Castle M.
        • Comoli E.
        • Loewy A.D.
        Autonomic brainstem nuclei are linked to the hippocampus.
        Neuroscience. 2005; 134: 657-669
        • Van Eden C.G.
        • Buijs R.M.
        Functional neuroanatomy of the prefrontal cortex: autonomic interactions.
        Prog Brain Res. 2000; 126: 49-62
        • Pascoal T.A.
        • Benedet A.L.
        • Ashton N.J.
        • et al.
        Microglial activation and tau propagate jointly across Braak stages.
        Nat Med. 2021; 27: 1592-1599
        • McManus R.M.
        • Heneka M.T.
        Role of neuroinflammation in neurodegeneration: new insights.
        Alzheimers Res Ther. 2017; 9: 14
        • Yu Y.
        • Jiang X.
        • Fang X.
        • Liu P.
        • Ling J.
        • Jiang M.
        Transauricular vagal nerve stimulation at 40 Hz attenuates hippocampal amyloid load in 6-month-old APP/PS1 mice.
        Brain Stimul. 2021; 14: 1669
        • Han C.
        • Yang Y.
        • Guan Q.
        • et al.
        New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis.
        J Cell Mol Med. 2020; 24: 8078-8090
        • Halle A.
        • Hornung V.
        • Petzold G.C.
        • et al.
        The NALP3 inflammasome is involved in the innate immune response to amyloid-beta.
        Nat Immunol. 2008; 9: 857-865
        • Chen Y.H.
        • Lin R.R.
        • Tao Q.Q.
        The role of P2X7R in neuroinflammation and implications in Alzheimer’s disease.
        Life Sci. 2021; 271: 119187
        • Zhu S.G.
        • Sheng J.G.
        • Jones R.A.
        • et al.
        Increased interleukin-1β converting enzyme expression and activity in Alzheimer disease.
        J Neuropathol Exp Neurol. 1999; 58: 582-587
        • Milner M.T.
        • Maddugoda M.
        • Götz J.
        • Burgener S.S.
        • Schroder K.
        The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease.
        Curr Opin Immunol. 2021; 68: 116-124
        • Heneka M.T.
        • Kummer M.P.
        • Stutz A.
        • et al.
        NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice.
        Nature. 2013; 493: 674-678
        • Heneka M.T.
        • Carson M.J.
        • El Khoury J.
        • et al.
        Neuroinflammation in Alzheimer’s disease.
        Lancet Neurol. 2015; 14: 388-405
        • Heneka M.T.
        • Golenbock D.T.
        • Latz E.
        Innate immunity in Alzheimer’s disease.
        Nat Immunol. 2015; 16: 229-236
        • Heneka M.T.
        • Kummer M.P.
        • Latz E.
        Innate immune activation in neurodegenerative disease.
        Nat Rev Immunol. 2014; 14: 463-477
        • Tan M.S.
        • Yu J.T.
        • Jiang T.
        • Zhu X.C.
        • Tan L.
        The NLRP3 inflammasome in Alzheimer’s disease.
        Mol Neurobiol. 2013; 48: 875-882
        • Mahib M.R.
        • Hosojima S.
        • Kushiyama H.
        • et al.
        Caspase-7 mediates caspase-1-induced apoptosis independently of Bid.
        Microbiol Immunol. 2020; 64: 143-152
        • Boucher D.
        • Monteleone M.
        • Coll R.C.
        • et al.
        Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity.
        J Exp Med. 2018; 215: 827-840
        • Guo H.
        • Callaway J.B.
        • Ting J.P.
        Inflammasomes: mechanism of action, role in disease, and therapeutics.
        Nat Med. 2015; 21: 677-687
        • Agostini L.
        • Martinon F.
        • Burns K.
        • McDermott M.F.
        • Hawkins P.N.
        • Tschopp J.
        NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder.
        Immunity. 2004; 20: 319-325
        • Bryant C.
        • Fitzgerald K.A.
        Molecular mechanisms involved in inflammasome activation.
        Trends Cell Biol. 2009; 19: 455-464
        • Horvath G.L.
        • Schrum J.E.
        • De Nardo C.M.
        • Latz E.
        Intracellular sensing of microbes and danger signals by the inflammasomes.
        Immunol Rev. 2011; 243: 119-135
        • Kanneganti T.D.
        • Body-Malapel M.
        • Amer A.
        • et al.
        Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA.
        J Biol Chem. 2006; 281: 36560-36568
        • Lamkanfi M.
        • Dixit V.M.
        Mechanisms and functions of inflammasomes.
        Cell. 2014; 157: 1013-1022
        • Mariathasan S.
        • Weiss D.S.
        • Newton K.
        • et al.
        Cryopyrin activates the inflammasome in response to toxins and ATP.
        Nature. 2006; 440: 228-232
        • Martinon F.
        • Mayor A.
        • Tschopp J.
        The inflammasomes: guardians of the body.
        Annu Rev Immunol. 2009; 27: 229-265
        • Martinon F.
        • Tschopp J.
        Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases.
        Cell. 2004; 117: 561-574
        • Wen H.
        • Miao E.A.
        • Ting J.P.-Y.
        Mechanisms of NOD-like receptor-associated inflammasome activation.
        Immunity. 2013; 39: 432-441
        • Flores J.
        • Noël A.
        • Foveau B.
        • Lynham J.
        • Lecrux C.
        • LeBlanc A.C.
        Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model.
        Nat Commun. 2018; 9: 3916
        • Ni C.M.
        • Sun H.P.
        • Xu X.
        • et al.
        Spinal P2X7R contributes to streptozotocin-induced mechanical allodynia in mice.
        J Zhejiang Univ Sci B. 2020; 21: 155-165
        • Martin E.
        • Amar M.
        • Dalle C.
        • et al.
        New role of P2X7 receptor in an Alzheimer’s disease mouse model.
        Mol Psychiatry. 2019; 24: 108-125
        • Francistiová L.
        • Bianchi C.
        • Di Lauro C.
        • et al.
        The role of P2X7 receptor in Alzheimer’s disease.
        Front Mol Neurosci. 2020; 13: 94
        • Di Virgilio F.
        • Dal Ben D.
        • Sarti A.C.
        • Giuliani A.L.
        • Falzoni S.
        The P2X7 receptor in infection and inflammation.
        Immunity. 2017; 47: 15-31
        • Martínez-Frailes C.
        • Di Lauro C.
        • Bianchi C.
        • et al.
        Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality.
        Front Cell Neurosci. 2019; 13: 143
        • Thawkar B.S.
        • Kaur G.
        Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease.
        J Neuroimmunol. 2019; 326: 62-74
        • Wang J.Y.
        • Zhang Y.
        • Chen Y.
        • et al.
        Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway.
        J Neuroinflammation. 2021; 18: 291
        • Guo X.
        • Zhao Y.
        • Huang F.
        • et al.
        Effects of transcutaneous auricular vagus nerve stimulation on peripheral and central tumor necrosis factor alpha in rats with depression-chronic somatic pain comorbidity.
        Neural Plast. 2020; 2020: 8885729
        • He W.
        • Jing X.H.
        • Zhu B.
        • et al.
        The auriculo-vagal afferent pathway and its role in seizure suppression in rats.
        BMC Neurosci. 2013; 14: 85
        • Li S.
        • Wang Y.
        • Gao G.
        • et al.
        Transcutaneous auricular vagus nerve stimulation at 20 Hz improves depression-like behaviors and down-regulates the hyperactivity of HPA axis in chronic unpredictable mild stress model rats.
        Front Neurosci. 2020; 14: 680
        • Leger M.
        • Quiedeville A.
        • Bouet V.
        • et al.
        Object recognition test in mice.
        Nat Protoc. 2013; 8: 2531-2537
        • Luo Y.
        • Yang W.
        • Li N.
        • et al.
        Anodal transcranial direct current stimulation can improve spatial learning and memory and attenuate Aβ42 burden at the early stage of Alzheimer’s disease in APP/PS1 transgenic mice.
        Front Aging Neurosci. 2020; 12: 134
        • Hanslik K.L.
        • Ulland T.K.
        The role of microglia and the Nlrp3 inflammasome in Alzheimer’s disease.
        Front Neurol. 2020; 11: 570711
        • Gage F.H.
        Mammalian neural stem cells.
        Science. 2000; 287: 1433-1438
        • Kreutzberg G.W.
        100 years of nissl staining.
        Trends Neurosci. 1984; 7: 236-237
        • Huffman W.J.
        • Subramaniyan S.
        • Rodriguiz R.M.
        • Wetsel W.C.
        • Grill W.M.
        • Terrando N.
        Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice.
        Brain Stimul. 2019; 12: 19-29
        • Vázquez-Oliver A.
        • Brambilla-Pisoni C.
        • Domingo-Gainza M.
        • Maldonado R.
        • Ivorra A.
        • Ozaita A.
        Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model.
        Brain Stimul. 2020; 13: 494-498
        • Craig A.D.
        How do you feel? Interoception: the sense of the physiological condition of the body.
        Nat Rev Neurosci. 2002; 3: 655-666
        • Jankowsky J.L.
        • Fadale D.J.
        • Anderson J.
        • et al.
        Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase.
        Hum Mol Genet. 2004; 13: 159-170
        • Xiong H.
        • Callaghan D.
        • Wodzinska J.
        • et al.
        Biochemical and behavioral characterization of the double transgenic mouse model (APPswe/PS1dE9) of Alzheimer’s disease.
        Neurosci Bull. 2011; 27: 221-232
        • Webster S.J.
        • Bachstetter A.D.
        • Van Eldik L.J.
        Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer’s disease.
        Alzheimers Res Ther. 2013; 5: 28
        • Woo D.C.
        • Lee S.H.
        • Lee D.W.
        • et al.
        Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS.
        Behav Brain Res. 2010; 211: 125-131
        • McGowan E.
        • Pickford F.
        • Kim J.
        • et al.
        Abeta42 is essential for parenchymal and vascular amyloid deposition in mice.
        Neuron. 2005; 47: 191-199
        • Kim J.
        • Onstead L.
        • Randle S.
        • et al.
        Abeta40 inhibits amyloid deposition in vivo.
        J Neurosci. 2007; 27: 627-633
        • Murray M.M.
        • Bernstein S.L.
        • Nyugen V.
        • Condron M.M.
        • Teplow D.B.
        • Bowers M.T.
        Amyloid beta protein: Abeta40 inhibits Abeta42 oligomerization.
        J Am Chem Soc. 2009; 131: 6316-6317
        • Murray M.M.
        • Krone M.G.
        • Bernstein S.L.
        • et al.
        Amyloid beta-protein: experiment and theory on the 21-30 fragment.
        J Phys Chem B. 2009; 113: 6041-6046
        • Barage S.H.
        • Sonawane K.D.
        Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease.
        Neuropeptides. 2015; 52: 1-18
        • Perl D.P.
        Neuropathology of Alzheimer’s disease.
        Mt Sinai J Med. 2010; 77: 32-42
        • Sanz J.M.
        • Chiozzi P.
        • Ferrari D.
        • et al.
        Activation of microglia by amyloid β requires P2X7 receptor expression.
        J Immunol. 2009; 182: 4378-4385
        • Wang Z.
        • Yu L.
        • Wang S.
        • et al.
        Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction.
        Circ Heart Fail. 2014; 7: 1014-1021
        • Fang J.
        • Rong P.
        • Hong Y.
        • et al.
        Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder.
        Biol Psychiatry. 2016; 79: 266-273
        • Koechlin E.
        • Basso G.
        • Pietrini P.
        • Panzer S.
        • Grafman J.
        The role of the anterior prefrontal cortex in human cognition.
        Nature. 1999; 399: 148-151
        • Carter C.S.
        • Botvinick M.M.
        • Cohen J.D.
        The contribution of the anterior cingulate cortex to executive processes in cognition.
        Rev Neurosci. 1999; 10: 49-57
        • Schmahmann J.D.
        • Caplan D.
        Cognition, emotion and the cerebellum.
        Brain. 2006; 129: 290-292