Advertisement

Comparative Efficacy of Neuromodulation Technologies for Overactive Bladder in Adults: A Network Meta-Analysis of Randomized Controlled Trials

  • Jiapeng Huang
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Ye Fan
    Affiliations
    Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China

    The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou , Guangdong, China
    Search for articles by this author
  • Kehong Zhao
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Chunlan Yang
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Ziqi Zhao
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Yin Chen
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Jiaen Yang
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Department of Rehabilitation Medicine, Affiliated Foshan Gaoming Hospital of Guangdong Medical University, Foshan, Guangdong, China
    Search for articles by this author
  • Tingting Wang
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author
  • Yun Qu
    Correspondence
    Address correspondence to: Yun Qu, MD, PhD, Department of Rehabilitation Medicine, West China Hospital, Sichuan University, 363 Furong Ave, Wenjiang District, Chengdu, Sichuan 610041, China.
    Affiliations
    Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China

    Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
    Search for articles by this author

      Abstract

      Objective

      The aim of this study was to investigate the comparative efficacy of neuromodulation technologies for overactive bladder (OAB) syndrome in adults.

      Data Sources

      A computerized search was conducted of Cochrane Library, EMBASE, MEDLINE (via PubMed), Web of Science, CNKI, Wan Fang Data, and ClinicalTrials.gov up to April 21, 2022.

      Study Selection

      The search selected clinical trials with random allocation to percutaneous tibial nerve stimulation (PTNS), transcutaneous tibial nerve stimulation (TTNS), vaginal electrical stimulation (VES), sacral neuromodulation (SNM), parasacral stimulation (PS), pudendal neuromodulation, or placebo.

      Data Extraction

      The main outcomes were the voiding diary, OAB-related quality of life, and positive response rate. The Cochrane Risk of Bias tool (RoB 2.0) was used to assess the risk of bias of each included study, and the Grading of Recommendations Assessment, Development, and Evaluation tool was used to evaluate the overall evidence quality of key outcomes.

      Data Synthesis

      The study included 21 randomized controlled trials involving 1433 participants, and all trials were used for the meta-analysis. In the network meta-analyses, five of six neuromodulation technologies, including PTNS, TTNS, VES, SNM, and PS, were related to higher efficacy than the placebo. Ranking probability showed that SNM was the most efficacious therapy for improving OAB-related quality of life, urinary episodes, and urinary frequency. For urgency incontinence episodes and the number of pads, PTNS and TTNS were the most efficacious modalities, respectively.

      Conclusion

      Neuromodulation technologies, including PTNS, TTNS, VES, SNM, and PS, may be effective and safe solutions for OAB syndrome in adults. Moreover, SNM is the most efficacious regimen for OAB-related quality of life, urinary episodes, and urinary frequency. PTNS and TTNS are the most efficacious modalities for reducing urgency incontinence episodes and the number of pads, respectively. Future studies should pay more attention to the quality of study design and report, patients who may benefit the most from neuromodulation, and the long-term effect, cost-effectiveness, and satisfaction of neuromodulation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abrams P.
        • Andersson K.E.
        • Birder L.
        • et al.
        Fourth International Consultation on Incontinence Recommendations of the International Scientific Committee: evaluation and treatment of urinary incontinence, pelvic organ prolapse, and fecal incontinence.
        Neurourol Urodyn. 2010; 29: 213-240https://doi.org/10.1002/nau.20870
        • Haylen B.T.
        • de Ridder D.
        • Freeman R.M.
        • et al.
        An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction.
        Int Urogynecol J. 2010; 21: 5-26https://doi.org/10.1007/s00192-009-0976-9
        • Chuang Y.C.
        • Liu S.P.
        • Lee K.S.
        • et al.
        Prevalence of overactive bladder in China, Taiwan and South Korea: results from a cross-sectional, population-based study.
        Low Urin Tract Symptoms. 2019; 11: 48-55https://doi.org/10.1111/luts.12193
        • Raju R.
        • Linder B.J.
        Evaluation and treatment of overactive bladder in women.
        Mayo Clin Proc. 2020; 95: 370-377https://doi.org/10.1016/j.mayocp.2019.11.024
        • Irwin D.E.
        • Milsom I.
        • Hunskaar S.
        • et al.
        Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study.
        Eur Urol. 2006; 50: 1306-1315https://doi.org/10.1016/j.eururo.2006.09.019
        • Ganz M.L.
        • Smalarz A.M.
        • Krupski T.L.
        • et al.
        Economic costs of overactive bladder in the United States.
        Urology. 2010; 75: 526-532https://doi.org/10.1016/j.urology.2009.06.096
        • Lightner D.J.
        • Gomelsky A.
        • Souter L.
        • Vasavada S.P.
        Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline amendment 2019.
        J Urol. 2019; 202: 558-563https://doi.org/10.1097/JU.0000000000000309
        • Stewart F.
        • Gameiro L.F.
        • El Dib R.
        • Gameiro M.O.
        • Kapoor A.
        • Amaro J.L.
        Electrical stimulation with non-implanted electrodes for overactive bladder in adults.
        Cochrane Database Syst Rev. 2016; 2017: CD010098https://doi.org/10.1002/14651858.CD010098.pub4
        • Chung E.
        • Lee D.
        • Gani J.
        • et al.
        Position statement: a clinical approach to the management of adult non-neurogenic overactive bladder.
        Med J Aust. 2018; 208: 41-45https://doi.org/10.5694/mja16.01097
        • D’Souza A.O.
        • Smith M.J.
        • Miller L.A.
        • Doyle J.
        • Ariely R.
        Persistence, adherence, and switch rates among extended-release and immediate-release overactive bladder medications in a regional managed care plan.
        J Manag Care Pharm. 2008; 14: 291-301https://doi.org/10.18553/jmcp.2008.14.3.291
        • Bartley J.
        • Gilleran J.
        • Peters K.
        Neuromodulation for overactive bladder.
        Nat Rev Urol. 2013; 10: 513-521https://doi.org/10.1038/nrurol.2013.143
        • Greenberg D.R.
        • Syan R.
        • Young-Lin N.
        • Comiter C.V.
        • Enemchukwu E.
        Outcomes of sacral nerve stimulation for treatment of refractory overactive bladder among octogenarians.
        Neuromodulation. 2019; 22: 738-744https://doi.org/10.1111/ner.12981
        • Johnson C.A.
        • Burridge J.H.
        • Strike P.W.
        • Wood D.E.
        • Swain I.D.
        The effect of combined use of botulinum toxin type A and functional electric stimulation in the treatment of spastic drop foot after stroke: a preliminary investigation.
        Arch Phys Med Rehabil. 2004; 85: 902-909https://doi.org/10.1016/j.apmr.2003.08.081
        • Huang J.
        • Zhao K.
        • Zhao Z.
        • Qu Y.
        Neuroprotection by transcranial direct current stimulation in rodent models of focal ischemic stroke: a meta-analysis.
        Front Neurosci. 2021; 15761971https://doi.org/10.3389/fnins.2021.761971
        • Sterne J.A.C.
        • Savović J.
        • Page M.J.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: l4898https://doi.org/10.1136/bmj.l4898
        • Guyatt G.
        • Oxman A.D.
        • Akl E.A.
        • et al.
        GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.
        J Clin Epidemiol. 2011; 64: 383-394https://doi.org/10.1016/j.jclinepi.2010.04.026
        • Salanti G.
        • Del Giovane C.
        • Chaimani A.
        • Caldwell D.M.
        • Higgins J.P.
        Evaluating the quality of evidence from a network meta-analysis.
        PLoS ONE. 2014; 9e99682https://doi.org/10.1371/journal.pone.0099682
        • Torres-Costoso A.
        • Martínez-Vizcaíno V.
        • Reina-Gutiérrez S.
        • et al.
        Effect of exercise on fatigue in multiple sclerosis: a network meta-analysis comparing different types of exercise.
        Arch Phys Med Rehabil. 2022; 103: 970-987.e18https://doi.org/10.1016/j.apmr.2021.08.008
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188https://doi.org/10.1016/0197-2456(86)90046-2
        • Lin M.T.
        • Chiang C.F.
        • Wu C.H.
        • Huang Y.T.
        • Tu Y.K.
        • Wang T.G.
        Comparative effectiveness of injection therapies in rotator cuff tendinopathy: a systematic review, pairwise and network meta-analysis of randomized controlled trials.
        Arch Phys Med Rehabil. 2019; 100: 336-349.e15https://doi.org/10.1016/j.apmr.2018.06.028
        • Mutz J.
        • Vipulananthan V.
        • Carter B.
        • Hurlemann R.
        • Fu C.H.Y.
        • Young A.H.
        Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis.
        BMJ. 2019; 364: l1079https://doi.org/10.1136/bmj.l1079
        • Chaimani A.
        • Higgins J.P.
        • Mavridis D.
        • Spyridonos P.
        • Salanti G.
        Graphical tools for network meta-analysis in Stata.
        PLoS ONE. 2013; 8e76654https://doi.org/10.1371/journal.pone.0076654
        • Salanti G.
        • Ades A.E.
        • Ioannidis J.P.
        Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.
        J Clin Epidemiol. 2011; 64: 163-171https://doi.org/10.1016/j.jclinepi.2010.03.016
        • Chiang C.F.
        • Lin M.T.
        • Hsiao M.Y.
        • Yeh Y.C.
        • Liang Y.C.
        • Wang T.G.
        Comparative efficacy of noninvasive neurostimulation therapies for acute and subacute poststroke dysphagia: a systematic review and network meta-analysis.
        Arch Phys Med Rehabil. 2019; 100: 739-750.e4https://doi.org/10.1016/j.apmr.2018.09.117
        • Tu Y.K.
        Using generalized linear mixed models to evaluate inconsistency within a network meta-analysis.
        Value Health. 2015; 18: 1120-1125https://doi.org/10.1016/j.jval.2015.10.002
        • Yu-Kang T.
        Node-splitting generalized linear mixed models for evaluation of inconsistency in network meta-analysis.
        Value Health. 2016; 19: 957-963https://doi.org/10.1016/j.jval.2016.07.005
        • Bucher H.C.
        • Guyatt G.H.
        • Griffith L.E.
        • Walter S.D.
        The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials.
        J Clin Epidemiol. 1997; 50: 683-691https://doi.org/10.1016/s0895-4356(97)00049-8
        • Fleiss J.L.
        The statistical basis of meta-analysis.
        Stat Methods Med Res. 1993; 2: 121-145https://doi.org/10.1177/096228029300200202
        • Araujo T.G.
        • Schmidt A.P.
        • Sanches P.R.S.
        • Silva Junior D.P.
        • Rieder C.R.M.
        • Ramos J.G.L.
        Transcutaneous tibial nerve home stimulation for overactive bladder in women with Parkinson’s disease: A randomized clinical trial.
        Neurourol Urodyn. 2021; 40: 538-548https://doi.org/10.1002/nau.24595
        • Falcão Padilha J.
        • Arias Avila M.
        • Driusso P.
        Parasacral versus tibial transcutaneous electrical stimulation to treat urinary urgency in adult women: randomized controlled clinical trial.
        Eur J Obstet Gynecol Reprod Biol. 2021; 267: 167-173https://doi.org/10.1016/j.ejogrb.2021.10.025
        • Finazzi-Agrò E.
        • Petta F.
        • Sciobica F.
        • Pasqualetti P.
        • Musco S.
        • Bove P.
        Percutaneous tibial nerve stimulation effects on detrusor overactivity incontinence are not due to a placebo effect: a randomized, double-blind, placebo controlled trial.
        J Urol. 2010; 184: 2001-2006https://doi.org/10.1016/j.juro.2010.06.113
        • Firinci S.
        • Yildiz N.
        • Alkan H.
        • Aybek Z.
        Which combination is most effective in women with idiopathic overactive bladder, including bladder training, biofeedback, and electrical stimulation? A prospective randomized controlled trial.
        Neurourol Urodyn. 2020; 39: 2498-2508https://doi.org/10.1002/nau.24522
        • Gungor Ugurlucan F.
        • Onal M.
        • Aslan E.
        • Ayyildiz Erkan H.
        • Kizilkaya Beji N.
        • Yalcin O.
        Comparison of the effects of electrical stimulation and posterior tibial nerve stimulation in the treatment of overactive bladder syndrome.
        Gynecol Obstet Invest. 2013; 75: 46-52https://doi.org/10.1159/000343756
        • Jacomo R.H.
        • Alves A.T.
        • Lucio A.
        • Garcia P.A.
        • Lorena D.C.R.
        • de Sousa J.B.
        Transcutaneous tibial nerve stimulation versus parasacral stimulation in the treatment of overactive bladder in elderly people: a triple-blinded randomized controlled trial.
        Clinics (Sao Paulo). 2020; 75: e1477https://doi.org/10.6061/clinics/2020/e1477
        • Lashin A.M.
        • Eltabey N.A.
        • Wadie B.S.
        Percutaneous tibial nerve stimulation versus sham efficacy in the treatment of refractory overactive bladder: outcomes following a shortened 6-week protocol, a prospective randomized controlled trial.
        Int Urol Nephrol. 2021; 53: 2459-2467https://doi.org/10.1007/s11255-021-02999-0
        • Mallmann S.
        • Ferla L.
        • Rodrigues M.P.
        • et al.
        Comparison of parasacral transcutaneous electrical stimulation and transcutaneous posterior tibial nerve stimulation in women with overactive bladder syndrome: a randomized clinical trial.
        Eur J Obstet Gynecol Reprod Biol. 2020; 250: 203-208https://doi.org/10.1016/j.ejogrb.2020.05.005
        • Peters K.M.
        • Carrico D.J.
        • Perez-Marrero R.A.
        • et al.
        Randomized trial of percutaneous tibial nerve stimulation versus Sham efficacy in the treatment of overactive bladder syndrome: results from the SUmiT trial.
        J Urol. 2010; 183: 1438-1443https://doi.org/10.1016/j.juro.2009.12.036
        • Pierre M.L.
        • Friso B.
        • Casarotto R.A.
        • Haddad J.M.
        • Baracat E.C.
        • Ferreira E.A.G.
        Comparison of transcutaneous electrical tibial nerve stimulation for the treatment of overactive bladder: a multi-arm randomized controlled trial with blinded assessment.
        Clinics (Sao Paulo). 2021; 76e3039https://doi.org/10.6061/clinics/2021/e3039
        • Ramírez-García I.
        • Blanco-Ratto L.
        • Kauffmann S.
        • Carralero-Martínez A.
        • Sánchez E.
        Efficacy of transcutaneous stimulation of the posterior tibial nerve compared to percutaneous stimulation in idiopathic overactive bladder syndrome: randomized control trial.
        Neurourol Urodyn. 2019; 38: 261-268https://doi.org/10.1002/nau.23843
        • Sonmez R.
        • Yildiz N.
        • Alkan H.
        Efficacy of percutaneous and transcutaneous tibial nerve stimulation in women with idiopathic overactive bladder: a prospective randomised controlled trial.
        Ann Phys Rehabil Med. 2022; 65101486https://doi.org/10.1016/j.rehab.2021.101486
        • Surbala L.
        • Khuman P.R.
        • Mital V.
        • Devanshi B.
        Neuromodulation for overactive bladder with transcutaneous electrical nerve stimulation in adults–a randomized clinical study.
        Int J Pharm Biol Sci. 2014; 5: 671-679
        • Teixeira Alve A.
        • Azevedo Garcia P.
        • Henriques Jácomo R.
        • et al.
        Effectiveness of transcutaneous tibial nerve stimulation at two different thresholds for overactive bladder symptoms in older women: a randomized controlled clinical trial.
        Maturitas. 2020; 135: 40-46https://doi.org/10.1016/j.maturitas.2020.02.008
        • Wang A.C.
        • Chen M.C.
        • Kuo W.Y.
        • Lin Y.H.
        • Wang Y.C.
        • Lo T.S.
        Urgency-free time interval as primary endpoint for evaluating the outcome of a randomized OAB treatment.
        Int Urogynecol J Pelvic Floor Dysfunct. 2009; 20: 819-825https://doi.org/10.1007/s00192-009-0860-7
        • Wang A.C.
        • Chih S.Y.
        • Chen M.C.
        Comparison of electric stimulation and oxybutynin chloride in management of overactive bladder with special reference to urinary urgency: a randomized placebo-controlled trial.
        Urology. 2006; 68: 999-1004https://doi.org/10.1016/j.urology.2006.05.038
        • Wang S.
        • Lv J.
        • Feng X.
        • Lv T.
        Efficacy of Electrical pudendal nerve Stimulation versus transvaginal Electrical Stimulation in Treating Female Idiopathic Urgency Urinary Incontinence.
        J Urol. 2017; 197: 1496-1501https://doi.org/10.1016/j.juro.2017.01.065
        • Welk B.
        • McKibbon M.
        A randomized, controlled trial of transcutaneous tibial nerve stimulation to treat overactive bladder and neurogenic bladder patients.
        Can Urol Assoc J. 2020; 14: E297-E303https://doi.org/10.5489/cuaj.6142
        • Yildiz N.
        • Alkan H.
        • Sarsan A.
        Efficacy of intravaginal electrical stimulation added to bladder training in women with idiopathic overactive bladder: a prospective randomized controlled trial.
        Int Braz J Urol. 2021; 47: 1150-1159https://doi.org/10.1590/S1677-5538.IBJU.2021.0161
        • Zhang Y.
        • Zhang P.
        • Tian X.
        • et al.
        Remotely programmed sacral neuromodulation for the treatment of patients with refractory overactive bladder: a prospective randomized controlled trial evaluating the safety and efficacy of a novel sacral neuromodulation device.
        World J Urol. 2019; 37: 2481-2492https://doi.org/10.1007/s00345-019-02698-7
        • Zonić-Imamović M.
        • Sinanović O.
        • Imamović M.
        • Muftić M.
        • Janković S.
        • Bazardžanović M.
        Effects of transcutaneous and percutaneous tibial nerve stimulation in Bosnian female patients with an idiopathic overactive urinary bladder.
        Acta Med Acad. 2021; 50: 235-243https://doi.org/10.5644/ama2006-124.339
        • Berghmans B.
        • van Waalwijk van Doorn E.
        • Nieman F.
        • de Bie R.
        • van den Brandt P.
        • Van Kerrebroeck P.
        Efficacy of physical therapeutic modalities in women with proven bladder overactivity.
        Eur Urol. 2002; 41: 581-587https://doi.org/10.1016/s0302-2838(02)00178-1
        • Ramírez-García I.
        • Kauffmann S.
        • Blanco-Ratto L.
        • Carralero-Martínez A.
        • Sánchez E.
        Patient-reported outcomes in the setting of a randomized control trial on the efficacy of transcutaneous stimulation of the posterior tibial nerve compared to percutaneous stimulation in idiopathic overactive bladder syndrome.
        Neurourol Urodyn. 2021; 40: 295-302https://doi.org/10.1002/nau.24554
        • Lo C.W.
        • Wu M.Y.
        • Yang S.S.
        • Jaw F.S.
        • Chang S.J.
        Comparing the efficacy of onabotulinumtoxinA, sacral neuromodulation, and peripheral tibial nerve stimulation as third line treatment for the management of overactive bladder symptoms in adults: systematic review and network meta-analysis.
        Toxins (Basel). 2020; 12: 128https://doi.org/10.3390/toxins12020128
        • Finazzi Agrò E.
        • Campagna A.
        • Sciobica F.
        • et al.
        Posterior tibial nerve stimulation: is the once-a-week protocol the best option?.
        Minerva Urol Nefrol. 2005; 57: 119-123
        • Malde S.
        • Marcelissen T.
        • Vrijens D.
        • et al.
        Sacral nerve stimulation for refractory OAB and idiopathic urinary retention: Can phenotyping improve the outcome for patients: ICI-RS 2019?.
        Neurourol Urodyn. 2020; 39: S96-S103https://doi.org/10.1002/nau.24204
        • Chermansky C.
        • Schurch B.
        • Rahnama’i M.S.
        • et al.
        How can we better manage drug-resistant OAB/DO? ICI-RS 2018.
        Neurourol Urodyn. 2019; 38: S46-S55https://doi.org/10.1002/nau.24055
        • Chen H.W.
        • Bercik R.S.
        • Werner E.F.
        • Thung S.F.
        Cost-effectiveness of percutaneous tibial nerve stimulation versus extended release tolterodine for overactive bladder.
        J Urol. 2012; 187: 178-184https://doi.org/10.1002/nau.22210
        • Manríquez V.
        • Guzmán R.
        • Naser M.
        • et al.
        Transcutaneous posterior tibial nerve stimulation versus extended release oxybutynin in overactive bladder patients. A prospective randomized trial.
        Eur J Obstet Gynecol Reprod Biol. 2016; 196: 6-10https://doi.org/10.1016/j.ejogrb.2015.09.020
        • Booth J.
        • Connelly L.
        • Dickson S.
        • Duncan F.
        • Lawrence M.
        The effectiveness of transcutaneous tibial nerve stimulation (TTNS) for adults with overactive bladder syndrome: a systematic review.
        Neurourol Urodyn. 2018; 37: 528-541https://doi.org/10.1002/nau.23351
        • Huang J.
        • Qu Y.
        • Liu L.
        • Zhao K.
        • Zhao Z.
        Efficacy and safety of transcranial direct current stimulation for post-stroke spasticity: a meta-analysis of randomised controlled trials.
        Clin Rehabil. 2022; 36: 158-171https://doi.org/10.1177/02692155211038097
        • Balk E.M.
        • Rofeberg V.N.
        • Adam G.P.
        • Kimmel H.J.
        • Trikalinos T.A.
        • Jeppson P.C.
        Pharmacologic and nonpharmacologic treatments for urinary incontinence in women: a systematic review and network meta-analysis of clinical outcomes.
        Ann Intern Med. 2019; 170: 465-479https://doi.org/10.7326/M18-3227