Abstract
Background
Objective
Materials and Methods
Results
Conclusions
Keywords
Introduction
- Guerriero G.
- Wartenberg C.
- Bernhardsson S.
- et al.
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
- Dow-Edwards D.
- MacMaster F.P.
- Peterson B.S.
- Niesink R.
- Andersen S.
- Braams B.R.
- Dow-Edwards D.
- MacMaster F.P.
- Peterson B.S.
- Niesink R.
- Andersen S.
- Braams B.R.
- Komisaruk B.R.
- Frangos E.
- Komisaruk B.R.
- Frangos E.
- Gelijns A.C.
- Killelea B.
- Vitale M.
- Vipul M.
- Moskowitz A.
- Bolz A.
- Bolz L.O.
- Egunsola O.
- Choonara I.
- Sammons H.M.
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
- Bolz A.
- Bolz L.O.
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
Material and Methods
Results
Search Results

Study | Clinical condition | Study design | Sample size (f) | Mean age (range) | tVNS device | Type of electrode | Stimulation site | Pulse width | Stimulation intensity (mA) | Stimulation frequency (Hz) | Stimulation duty cycle | Stimulation dose |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aihua et al 36 | Pharmaco-resistant epilepsy | RCT | 26 (n.r.) | 34.5 (16–60) | TENS-200, Hua Tuo brand | Bilateral (plug like) | Ramsay-Hunt zone | 0.2 s | 2 mA (increasing in steps of 2 mA until discomfort) | 20 Hz | n.r. (likely constant stimulation) | 20 min, 3 times per day, for 12 mo |
Liu et al 39 | Refractory epilepsy | Observational study | 17 (7) | 27 (12–65) | TENS-sm, Suzhou Medical Audio Supplies Company Ltd, China | Clip electrode | Cavity of the auricular concha and the outside of the external ear canal | Biphasic waveform, 200 s | 4 mA (increasing in steps of 2 mA until individual tolerance level was reached) | 10 Hz | n.r. (likely constant stimulation) | 20 min, 3 times per day, for 6 mo |
Badran et al 46 | Premature/HIE infants | Open label pilot study | 14 (n.r.) | Preterm infants (<33 wk) and term infants suffering from HIE | Digitimer DS7AH | Custom ear electrode | Tragus | 500 μs | 0.1 mA | 25 Hz | 2 min on/15 s off | 30 min per day |
Barbella et al 33 | Refractory epilepsy | Prospective, open-label, single-center experimental trial | 20 (10) | 38.6 (16–57) | n.r. | n.r. | n.r. (placed according to the 10–20 System) | n.r. | 0.6–0.8 mA | 20 s on/5 min off | 4 h in individual sessions (duration of 1 h minimum) per day, for 6 mo | |
Fang et al 34 | MDD | Single blind clinical trial | 34 (24) | 40.87 (16–70) | n.r. | Bilateral clip electrodes | Auricular concha | 1 ms | 4–6 mA | 20 Hz | n.r. | 30 min, 2 times per day, for 5 d a week, for 4 wk |
Finetti 44 | Dravet syndrome | Case report | 1 (1) | 11 (n.r.) | NEMOS, Cerbomed | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | Daily stimulation time of 4 h |
He et al 37 | Epilepsy | Pilot trial | 14 (3) | 7.8 (2–12) | TENS-200, Suzhou, China | Conductive rubber clips (5 mm diameter) | Concha cavity and cymba conchae | n.r. | 0.4–1 mA (individual tolerance level) | 20 Hz | n.r. | 30 min, 3 times a day, for 24 wk |
He et al 47 | Epilepsy | RCT (study protocol) | 42 (n.r.) | n.r. (2–14) | TENS-200, Suzhou, Jiangsu, China | Conductive rubber clips (5 mm diameter) | Concha cavity and cymba conchae | n.r. | 1 mA | 20 Hz | n.r. | 30 min, 3 times a day, for 6 mo |
Koenig et al 45 | MDD | Preclinical experimental trial | 63 (49) | n.r. (14–17) | VITOS, Cerbotech | Ear electrode “Legacy” | Cymba conchae | 250 μs | 0.5 mA | 1 Hz | 30 s on/30 s off | 2 stimulation periods of 15 min duration |
Li et al 41 | Tinnitus | RCT (study protocol) | 120 (n.r.) | n.r. (15–65) | TENS device; Suzhou Medical Appliance Co Ltd, China | Carbon-impregnated silicone connected by metal wire | Cymba conchae and the triangular fossa | <1 ms | 1–5 mA | 20 Hz | n.r. | 30 min, every other day, for 8 wk |
Mei et al 38 | Tinnitus | RCT | 63 (34) | 41.1 (17–63) | TENS-200, Suzhou, China | Electrode clip | Cavum conchae | 1 ms | 1 mA | 20 Hz | n.r. | 20 min, 2 times a day, for 8 wk |
Rong et al 43 | Depression | Double-blinded RCT (study protocol) | 60 (n.r.) | n.r. (16–70) | TENS device | 2 carbon- impregnated silicone electrodes | Concha | <1 ms | 1 mA (adjustable) | 20 Hz | n.r. | 30 min, 2 times a day, 5 days a week, for 12 wk |
Rong et al 42 | Drug-resistant epilepsy | Observational study | 50 (20) | 25.2 (n.r.) | TENS device; Suzhou Medical Appliance Co Ltd, China | 2 carbon-impregnated silicone electrodes | Triangular fossa of the auricle | ≤1 ms pulse duration | 1 mA | 20–30 Hz | n.r. (likely constant stimulation) | 30 min, 2 times a day, for 24 wk |
Rong et al 40
Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin Sci (Lond). Published online April 1, 2014; https://doi.org/10.1042/CS20130518 | Refractory epilepsy | RCT | 98 (34) | 24.44 (n.r.) | TENS-sm; Suzhou Medical Appliance Co Ltd, China | 3 carbon-impregnated silicone electrode tips | Triangular fossa off the auricle | ≤1 ms pulse duration | 1 mA | 20–30 Hz | n.r. (likely constant stimulation) | 30 min, 2 times a day, for 24 wk |
Tauber 48 ,
Study of emotion and cognition abilities of children with PWS and proposition of an innovative remediation (PRACOM1). Identifier NCT04526379. https://www.clinicaltrials.gov/ct2/show/NCT04526379 Date accessed: August 15, 2022 | Prader-Willi syndrome | Nonrandomized clinical trial | 12 (n.r.) | n.r. (9–15) | Parasym™ tVNS Device | Ear clip electrode | Tragus of the left ear | 200 μs | 1–36 mA (until a tingling sensation was reported) | 25 Hz | n.r. | 60 min, 5 d a week, for 6 mo |
Xiao et al 35 | Depression | RCT (study protocol) | 120 (n.r.) | n.r. (12–16) | n.r. | Electrode clip | Cymba concha (auricular) | n.r. | Adjustable until discomfort | 4 Hz for 5 s 20 Hz for 10 s | n.r. | 30 min, 2 times a day (morning and evening), for 8 wk |
Contact | Trial no. | Clinical condition | Study design | Enrollment (N) | Ages eligible for study | Status | Last update |
---|---|---|---|---|---|---|---|
Benner | NCT05129020 | Neonatal opioid withdrawal syndrome | Randomized | 80 | 33 wk–1 y | Not yet recruiting | February 25, 2022 |
Chelimsky | NCT04247100 | Pediatric functional gastrointestinal disorders | Randomized | 10 | 12–18 y | Terminated | December 21, 2021 |
Dijan | NCT04177511 | Chronic pelvic pain caused by endometriosis | Randomized/open label | 72 | ≥15 y | Recruiting | December 15, 2021 |
He | NCT02004340 | Epilepsy | Randomized | 120 | 2–18 y | Recruiting | February 13, 2015 |
Jenkins | NCT05101707 | Unilateral upper extremity weakness | Nonrandomized/open label | 5 | 6–18 mo | Not yet recruiting | February 25, 2022 |
Jenkins | NCT04643808 | Poor oral feeding | Nonrandomized/crossover | 40 | Up to 5 mo | Recruiting | February 25, 2022 |
Jenkins | NCT04632069 | Poor oral feeding | Single group/open label | 10 | Up to 5 mo | Recruiting | January 24, 2022 |
Jenkins and Lubeskie | NCT04849507 | Poor oral feeding | Randomized/crossover | 20 | Up to 5 mo | Not yet recruiting | March 11, 2022 |
Laurent | NCT04169776 | Idiopathic nephrotic syndrome | Nonrandomized/open label | 30 | 2–21 y | Recruiting | August 31, 2021 |
Ma | NCT05256173 | Epilepsy | Randomized | 100 | 7–65 y | Recruiting | February 25, 2022 |
Parker | NCT04396470 | Prader-Willi syndrome | Randomized | 30 | 8–14 y | Withdrawn | May 6, 2021 |
Sahn | NCT03863704 | Pediatric inflammatory bowel disease | Randomized | 30 | 10–21 y | Enrolling by invitation | February 2, 2022 |
Tauber and Valette | NCT04526379 | Prader-Willi syndrome | Nonrandomized/open label | 60 (30 with and 30 without Prader-Willi syndrome) | 9–15 y | Recruiting | November 3, 2020 |
Van Diest | NCT02113306 | Fear extinction (experimental study) | Randomized | 50 | 16–50 y | Unknown | April 14, 2014 |
Yang | NCT03592446 | Depression | Randomized crossover | 60 | 15–70 y | Not yet recruiting | July 19, 2018 |
Reported Study Protocols and Stimulation Parameters in Pediatric Patients
Stimulation Devices and Electrode Types
- Rong P.
- Liu A.
- Zhang J.
- et al.
Reported Stimulation Locations
Studies in Epilepsy
- Rong P.
- Liu A.
- Zhang J.
- et al.
- Rong P.
- Liu A.
- Zhang J.
- et al.
Studies in Depression
Tinnitus and Other Conditions
Discussion
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
- Bolz A.
- Bolz L.O.
- Burger A.M.
- D’Agostini M.
- Verkuil B.
- Van Diest I.
- Wolf V.
- Kühnel A.
- Teckentrup V.
- Koenig J.
- Kroemer N.B.
- Koenig J.
- van Dinteren R.
- Arns M.
- Jongsma M.L.A.
- Kessels R.P.C.
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
- Oberman L.M.
- Hynd M.
- Nielson D.M.
- Towbin K.E.
- Lisanby S.H.
- Stringaris A.
- Farmer A.D.
- Strzelczyk A.
- Finisguerra A.
- et al.
Conclusions
Authorship Statements
References
- Efficacy of transcutaneous vagus nerve stimulation as treatment for depression: a systematic review.J Affect Disord Rep. 2021; 6100233https://doi.org/10.1016/j.jadr.2021.100233
- International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (version 2020).Front Hum Neurosci. 2021; 14568051https://doi.org/10.3389/fnhum.2020.568051
- Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review.Brain Stimul. 2018; 11: 1225-1238https://doi.org/10.1016/j.brs.2018.08.010
- The adolescent brain.Ann N Y Acad Sci. 2008; 1124: 111-126https://doi.org/10.1196/annals.1440.010
- Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior.Neurotoxicol Teratol. 2019; 76106834https://doi.org/10.1016/j.ntt.2019.106834
- Dynamic mapping of human cortical development during childhood through early adulthood.Proc Natl Acad Sci U S A. 2004; 101: 8174-8179https://doi.org/10.1073/pnas.0402680101
- Mapping changes in the human cortex throughout the span of life.Neuroscientist. 2004; 10: 372-392https://doi.org/10.1177/1073858404263960
- Adolescence as a sensitive period of brain development.Trends Cogn Sci. 2015; 19: 558-566https://doi.org/10.1016/j.tics.2015.07.008
- Vagus nerve afferent stimulation: projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance.Auton Neurosci. 2022; 237102908https://doi.org/10.1016/j.autneu.2021.102908
- Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice.Front Neurosci. 2020; 14: 284https://doi.org/10.3389/fnins.2020.00284
- Radley-Gardner O. Beale H. Zimmermann R. Fundamental Texts on European Private Law. Hart Publishing, 2016https://doi.org/10.5040/9781782258674
- The dynamics of pediatric device innovation: putting evidence in context.in: Safe Medical Devices for Children. National Academies Press, 200511313https://doi.org/10.17226/11313
- Experience with pediatric medical device development.Front Pediatr. 2020; 8: 79https://doi.org/10.3389/fped.2020.00079
- Comparison of supportive regulatory measures for pediatric medical device development in Japan and the United States.J Artif Organs. 2021; 24: 90-101https://doi.org/10.1007/s10047-020-01216-6
- Medical device development for children and young people—reviewing the challenges and opportunities.Pharmaceutics. 2021; 13: 2178https://doi.org/10.3390/pharmaceutics13122178
- Technical aspects and future approaches in transcutaneous vagus nerve stimulation (tVNS).Auton Neurosci. 2022; 239102956https://doi.org/10.1016/j.autneu.2022.102956
- Therapeutic drug monitoring in child and adolescent psychiatry.Pharmacopsychiatry. 2011; 44: 249-253https://doi.org/10.1055/s-0031-1286291
- Treatment-emergent adverse events from selective serotonin reuptake inhibitors by age group: children versus adolescents.J Child Adolesc Psychopharmacol. 2006; 16: 159-169https://doi.org/10.1089/cap.2006.16.159
- Antipsychotic and mood stabilizer efficacy and tolerability in pediatric and adult patients with bipolar I mania: a comparative analysis of acute, randomized, placebo-controlled trials.Bipolar Disord. 2010; 12: 116-141https://doi.org/10.1111/j.1399-5618.2010.00798.x
- Safety of lamotrigine in paediatrics: a systematic review.BMJ Open. 2015; 5e007711https://doi.org/10.1136/bmjopen-2015-007711
- Medical device design for adolescent adherence and developmental goals: a case study of a cystic fibrosis physiotherapy device.Patient Prefer Adherence. 2014; 8: 301-309https://doi.org/10.2147/PPA.S59423
- Medical Device Design for Adolescents.Doctoral Thesis. University of Nottingham, 2012
- A qualitative assessment of medical device design by healthy adolescents.in: Lang A. Martin J. Sharples S. Crowe J. Advances in Human Factors and Ergonomics in Healthcare. CRC Press, 2010: 555-564
- The effect of design on the usability and real world effectiveness of medical devices: a case study with adolescent users.Appl Ergon. 2013; 44: 799-810https://doi.org/10.1016/j.apergo.2013.02.001
- The anatomical basis for transcutaneous auricular vagus nerve stimulation.J Anat. 2020; 236: 588-611https://doi.org/10.1111/joa.13122
- Current directions in the auricular vagus nerve stimulation II — an engineering perspective.Front Neurosci. 2019; 13: 772https://doi.org/10.3389/fnins.2019.00772
- Current directions in the auricular vagus nerve stimulation I — a physiological perspective.Front Neurosci. 2019; 13: 854https://doi.org/10.3389/fnins.2019.00854
- A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions.J Neurophysiol. 2020; 123: 1739-1755https://doi.org/10.1152/jn.00057.2020
- Application of noninvasive vagal nerve stimulation to stress-related psychiatric disorders.J Pers Med. 2020; 10: 119https://doi.org/10.3390/jpm10030119
- Vagus nerve stimulation in psychiatry: a systematic review of the available evidence.J Neural Transm (Vienna). 2017; 124: 145-158https://doi.org/10.1007/s00702-016-1642-2
- Vagus nerve and vagus nerve stimulation, a comprehensive review: part II.Headache. 2016; 56: 259-266https://doi.org/10.1111/head.12650
- Evaluation of different vagus nerve stimulation anatomical targets in the ear by vagus evoked potential responses.Brain Behav. 2021; 11: e2343https://doi.org/10.1002/brb3.2343
- Transcutaneous vagal nerve stimulation (t-VNS): an adjunctive treatment option for refractory epilepsy.Seizure. 2018; 60: 115-119https://doi.org/10.1016/j.seizure.2018.06.016
- Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder.Biol Psychiatry. 2016; 79: 266-273https://doi.org/10.1016/j.biopsych.2015.03.025
- Efficacy and brain mechanism of transcutaneous auricular vagus nerve stimulation for adolescents with mild to moderate depression: study protocol for a randomized controlled trial.Pediatr Investig. 2020; 4: 109-117https://doi.org/10.1002/ped4.12198
- A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy.Epilepsy Behav. 2014; 39: 105-110https://doi.org/10.1016/j.yebeh.2014.08.005
- Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial.Epilepsy Behav. 2013; 28: 343-346https://doi.org/10.1016/j.yebeh.2013.02.001
- Treatment of tinnitus with electrical stimulation on acupoint in the distribution area of ear vagus nerve combining with sound masking: randomized controlled trial.World J Acupunct Moxibustion. 2014; 24: 30-35https://doi.org/10.1016/S1003-5257(14)60022-2
- Efficacy and safety of treatment with transcutaneous vagus nerve stimulation in 17 patients with refractory epilepsy evaluated by electroencephalogram, seizure frequency, and quality of life.Med Sci Monit. 2018; 24: 8439-8448https://doi.org/10.12659/MSM.910689
- Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial.Clin Sci (Lond). Published online April 1, 2014; https://doi.org/10.1042/CS20130518
- Transcutaneous electrical stimulation at auricular acupoints innervated by auricular branch of vagus nerve pairing tone for tinnitus: study protocol for a randomized controlled clinical trial.Trials. 2015; 16: 101https://doi.org/10.1186/s13063-015-0630-4
- An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation.Chin Med J (Engl). 2014; 127: 300-304
- Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial.BMC Complement Altern Med. 2012; 12: 255https://doi.org/10.1186/1472-6882-12-255
- P90. Transcutaneous vagus nerve stimulation (t-VNS) in a child with Dravet syndrome — a case report.Clin Neurophysiol. 2015; 126: e147https://doi.org/10.1016/j.clinph.2015.04.240
- Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression.Psychol Med. 2021; 51: 511-520https://doi.org/10.1017/S0033291719003490
- Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study.Front Hum Neurosci. 2020; 14: 77https://doi.org/10.3389/fnhum.2020.00077
- Transcutaneous auricular vagus nerve stimulation for pediatric epilepsy: study protocol for a randomized controlled trial.Trials. 2015; 16: 371https://doi.org/10.1186/s13063-015-0906-8
- Study of emotion and cognition abilities of children with PWS and proposition of an innovative remediation (PRACOM1). Identifier NCT04526379.https://www.clinicaltrials.gov/ct2/show/NCT04526379Date accessed: August 15, 2022
- Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study.J Affect Disord. 2016; 195: 172-179https://doi.org/10.1016/j.jad.2016.02.031
- Application of a computational model of vagus nerve stimulation.Acta Neurol Scand. 2012; 126: 336-343https://doi.org/10.1111/j.1600-0404.2012.01656.x
- Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation.Psychophysiology. 2020; 57e13571https://doi.org/10.1111/psyp.13571
- Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis.Psychophysiology. 2021; 58e13933https://doi.org/10.1111/psyp.13933
- Neurovisceral regulatory circuits of affective resilience in youth: principal outline of a dynamic model of neurovisceral integration in development.Psychophysiology. 2020; 57e13568https://doi.org/10.1111/psyp.13568
- P300 development across the lifespan: a systematic review and meta-analysis.PLoS One. 2014; 9e87347https://doi.org/10.1371/journal.pone.0087347
- Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: evidence from repeated daily life assessments.Psychoneuroendocrinology. 2013; 38: 3167-3171https://doi.org/10.1016/j.psyneuen.2013.09.008
- Salivary alpha-amylase stress reactivity across different age groups.Psychophysiology. 2010; 47: 587-595https://doi.org/10.1111/j.1469-8986.2009.00957.x
- Age differences of salivary alpha-amylase levels of basal and acute responses to citric acid stimulation between Chinese children and adults.Front Physiol. 2015; 6: 340https://doi.org/10.3389/fphys.2015.00340
- Repetitive transcranial magnetic stimulation for adolescent major depressive disorder: a focus on neurodevelopment.Front Psychiatry. 2021; 12642847https://doi.org/10.3389/fpsyt.2021.642847
- Ethics Working Group of the Confederation of European Specialists in Paediatrics. Ethical principles and operational guidelines for good clinical practice in paediatric research. Recommendations of the Ethics Working Group of the Confederation of European Specialists in Paediatrics (CESP).Eur J Pediatr. 2004; 163: 53-57https://doi.org/10.1007/s00431-003-1378-5
Article info
Publication history
Footnotes
Source(s) of financial support: The study was supported by funds from the Germany Federal Ministry of Education and Research (BMBF) under grant number 13GW0492D (PI: Julian Koenig).
Conflict of Interest: Armin Bolz is an investor of tVNS Technologies GmbH, Erlangen. Lars-Oliver Bolz is a shareholder and CEO of tVNS Technologies GmbH, Erlangen. Tobias Jeglorz is employed by SASSE Elektronik GmbH, Erlangen. The remaining authors reported no conflict of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy