Abstract
Background
Objective
Summary of the Main Findings
Conclusions
Keywords
Introduction
- Jakobs M.
- Fomenko A.
- Lozano A.M.
- Kiening K.L.
- Bucksot J.E.
- Wells A.J.
- Rahebi K.C.
- et al.
Anatomical Reminder: The Vagus Nerve and Its Projection
- Stakenborg N.
- Gomez-Pinilla P.J.
- Verlinden T.J.M.
- et al.
Which Fibers Are Involved, and Which Are the Actual Targets of VNS?
VNS Therapy and Neurotransmitter and Cytokines Release
- Berger A.
- Vespa S.
- Dricot L.
- et al.
Functional Imaging Studies
Impact on Brain Electrophysiological Signals
EEG Synchronization and Power Spectral Analysis
Ernst LD, Steffan PJ, Srikanth P, et al. Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation. J Clin Neurophysiol. 2023;40:37-44. https://dx.doi.org/10.1097/WNP.0000000000000847.
Spikes and Interictal Epileptiform Activity
Cortical Excitability
Resting State MEG Connectivity Analysis
Brain Functional Connectivity Studies
Discussion
Study | Parameters |
---|---|
Hammond et al 20 | 1.25–3 mA, 10–30 Hz (1 patient at 2 Hz), 500 μs |
Evans et al 42 | 0.25–3 mA, 1–5 Hz, 16 stimuli during surgery |
Usami et al 43 | 0.25–1 mA, 30 Hz, 130–500 μs |
Vespa et al 44 | 0.25–1 mA, 20 Hz, 250 μs |
Bouckaert et al 92 | >0.25 up to tolerability, 30 Hz, 130–500 μs, 7 s ON–18 s OFF |
De Taeye et al 47 | 0.75–3 mA, 25–30 Hz, 250–500 μs |
Ben-Menachem et al, 1995 51 | High stim = 1.25–3 mA, 30 s ON–5 min OFF Low stim = 1.25–3 mA, 3 s ON–90 min OFF |
Aalbers et al 52 | High stim = 0.25 mA, 30 Hz, 500 μs, 30 s ON–5 min OFF Low stim = 0.25 mA, 1 Hz, 100 μs, 14 s ON–1 min OFF |
Klinkenberg et al 54 | High stim = <2.75 mA, 30 Hz, 500 μs, 30 s ON–5 min OFF Low stim = <2.75 mA, 1 Hz, 100 μs, 14 s ON–60 min OFF |
Ko et al 55 | 2 mA, 30 Hz, 60 s during PET scan |
Henry et al 56 | High stim = 0.25–2.5 mA, 30 Hz, 500 μs, 30 s ON–5 min OFF Low stim = 0.25–1.25 mA, 1 Hz, 130 μs, 30 s ON–180 min OFF |
Narayanan et al 57 | 0.5–2.0 mA, 30 Hz, 30 s ON and 30 s OFF |
Marrosu et al, 2013 58 | 1.75–2 mA, 30 Hz, 500 μs, 30 s ON–5 min OFF |
Zhu et al 59 | 1.5 mA, 30 Hz, 250 μs, 30 s ON–5 min OFF |
Yu et al 60 | 2–2.5 mA, 30 s ON–5 min OFF |
Hallböök et al 69 | 1.5 mA, 30 Hz, 500 μs, 30 s ON–5 min OFF |
Koo et al 93 | Increase of 0.25 mA every 2 wk up to patient tolerance, 20–30 Hz, 500 μs, 30 s ON–5 min OFF |
Kuba et al 71 | 20–30 Hz, 500 μs, 30 s ON–5 min OFF or 21 s ON–3 min OFF |
Kuba et al 72 | 20–30 Hz, 500 μs, 21 s ON–3 min OFF or 21 s ON–1.8 min OFF |
Wang et al 73 | 0.75–1.75 mA, 20–30 Hz, 250–500 μs, 30 s ON–5 min OFF |
Olejniczak et al 74 (case report) | 2.75 mA, 30 Hz, 500 μs, 30 s ON–1.1 min OFF |
Bunch et al 77 | Group A: <1.5 mA, 20 Hz, 500 μs, 7 s ON–18 s OFF Group B: <1.5 mA, 20 Hz, 250 μs, 30 s ON–30 s OFF Group C: <1.5 mA, 30 Hz, 500 μs, 30 s ON–3 min OFF |
Fraschini et al 82 | 30 Hz, 30 s ON–5 min OFF |
Bodin et al 84 | 0.5–2.5 mA, 30 Hz, 500 μs |
Bartolomei et al 85 | 1.5–2 mA, 30 Hz, 30 s ON–500 s OFF |
Ravan et al 90 | >0.5 mA |
- Morrison R.A.
- Danaphongse T.T.
- Abe S.T.
- et al.


Conclusions
Authorship Statements
References
- The wonders of the Wanderer.Exp Physiol. 2013; 98: 38-45https://doi.org/10.1113/expphysiol.2012.064543
- The anti-strychnine action of acetylcholine, prostigmine and related substances, and of central vagus stimulation.J Physiol. 1937; 90: 310-329https://doi.org/10.1113/jphysiol.1937.sp003516
- The effect of vagal afferent stimulation on the EEG pattern of the cat.Electroencephalogr Clin Neurophysiol. 1952; 4: 357-361https://doi.org/10.1016/0013-4694(52)90064-3
- Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization.Brain Res. 1967; 5: 236-249https://doi.org/10.1016/0006-8993(67)90089-3
- Cortical and subcortical patterns of response to afferent vagal stimulation.Exp Neurol. 1966; 16: 36-49https://doi.org/10.1016/0014-4886(66)90084-7
- Vagal nerve stimulator: a new approach to medically refractory epilepsy.N J Med. 1999; 96: 37-40
- Vagus-nerve stimulation for the treatment of epilepsy.Lancet Neurol. 2002; 1: 477-482https://doi.org/10.1016/s1474-4422(02)00220-x
- Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results.Epilepsia. 1990; 31: S40-S43https://doi.org/10.1111/j.1528-1157.1990.tb05848.x
- Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre.Seizure. 2018; 58: 120-126https://doi.org/10.1016/j.seizure.2018.03.022
- Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy.Seizure. 2019; 71: 140-144https://doi.org/10.1016/j.seizure.2019.07.006
- Comparison of traditional and closed loop vagus nerve stimulation for treatment of pediatric drug-resistant epilepsy: a propensity-matched retrospective cohort study.Seizure. 2022; 94: 74-81https://doi.org/10.1016/j.seizure.2021.11.016
- Evaluating vagus nerve stimulation treatment with heart rate monitoring in pediatric patients with intractable epilepsy.Childs Nerv Syst. 2022; 38: 547-556https://doi.org/10.1007/s00381-021-05416-0
- Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.J Neurochem. 2016; 139: 338-345https://doi.org/10.1111/jnc.13649
- Closing the loop of deep brain stimulation.Front Syst Neurosci. 2013; 7: 112https://doi.org/10.3389/fnsys.2013.00112
- A comprehensive review of brain connectomics and imaging to improve deep brain stimulation outcomes.Mov Disord. 2020; 35: 741-751https://doi.org/10.1002/mds.28045
- Latest view on the mechanism of action of deep brain stimulation.Mov Disord. 2008; 23: 2111-2121
- Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments.EMBO Mol Med. 2019; 11e9575https://doi.org/10.15252/emmm.201809575
- Therapeutic mechanisms of vagus nerve stimulation.Neurology. 2002; 59: S3-S14
- Use of polyvinyl alcohol sponge cubes for vagal nerve stimulation: a suggestion for the wrapping step. Technical note and step-by-step operative technique.Oper Neurosurg (Hagerstown). 2020; 18: 487-495https://doi.org/10.1093/ons/opz227
- Neurochemical effects of vagus nerve stimulation in humans.Brain Res. 1992; 583: 300-303https://doi.org/10.1016/s0006-8993(10)80038-1
- The mechanism of action of vagus nerve stimulation for refractory epilepsy: the current status. J.Clin Neurophysiol. 2001; 18: 394-401https://doi.org/10.1097/00004691-200109000-00002
- Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects.Neurosci Biobehav Rev. 2005; 29: 493-500https://doi.org/10.1016/j.neubiorev.2005.01.004
- Which elements are excited in electrical stimulation of mammalian central nervous system: a review.Brain Res. 1975; 98: 417-440https://doi.org/10.1016/0006-8993(75)90364-9
- Chronaxie calculated from current-duration and voltage-duration data.J Neurosci Methods. 2000; 97: 45-50https://doi.org/10.1016/s0165-0270(00)00163-1
- Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements.Exp Brain Res. 1998; 118: 477-488https://doi.org/10.1007/s002210050304
- Application of a computational model of vagus nerve stimulation.Acta Neurol Scand. 2012; 126: 336-343https://doi.org/10.1111/j.1600-0404.2012.01656.x
- Flat electrode contacts for vagus nerve stimulation.PLoS One. 2019; 14e0215191https://doi.org/10.1371/journal.pone.0215191
- Samuel Thomas Soemmerring (1755–1830): the naming of cranial nerves.Eur Neurol. 2017; 77: 303-306https://doi.org/10.1159/000475812
- Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment.Acta Neurol Scand. 2016; 133: 173-182https://doi.org/10.1111/ane.12462
- Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat.J Physiol (Lond). 1957; 135: 182-205https://doi.org/10.1113/jphysiol.1957.sp005703
- Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers.J Comp Neurol. 1937; 67: 49-67https://doi.org/10.1002/cne.900670104
- Comparison between the cervical and abdominal vagus nerves in mice, pigs, and humans.Neurogastroenterol Motil. 2020; 32e13889https://doi.org/10.1111/nmo.13889
- Brainstem connections of vagal afferent nerves in the ferret: an autoradiographic study.J Anat. 1985; 140: 461-469
- Neurochemical correlates of antiepileptic drugs in the genetically epilepsy-prone rat (GEPR).Life Sci. 1996; 58: 259-266https://doi.org/10.1016/0024-3205(95)02286-4
- Noradrenergic modulation of excitability in acute and chronic model epilepsies.Epilepsy Res Suppl. 1992; 8: 321-334https://doi.org/10.1016/b978-0-444-89710-7.50046-x
- Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation.Epilepsia. 1998; 39: 709-714https://doi.org/10.1111/j.1528-1157.1998.tb01155.x
- Seizure suppression by systemic epinephrine is mediated by the vagus nerve.Epilepsy Res. 2000; 38: 171-175https://doi.org/10.1016/s0920-1211(99)00089-3
- Inhibition of experimental seizures in canines by repetitive vagal stimulation.Epilepsia. 1992; 33: 1005-1012https://doi.org/10.1111/j.1528-1157.1992.tb01751.x
- Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats.Epilepsia. 2001; 42: 586-589https://doi.org/10.1046/j.1528-1157.2001.09700.x
- Excitation properties of the right cervical vagus nerve in adult dogs.Exp Neurol. 2011; 227: 62-68https://doi.org/10.1016/j.expneurol.2010.09.011
- Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers.Brain Stimul. 2020; 13: 1617-1630https://doi.org/10.1016/j.brs.2020.09.002
- Intraoperative human vagus nerve compound action potentials.Acta Neurol Scand. 2004; 110: 232-238https://doi.org/10.1111/j.1600-0404.2004.00309.x
- Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation.Brain Stimul. 2013; 6: 615-623https://doi.org/10.1016/j.brs.2012.09.007
- Vagus nerve stimulation-induced laryngeal motor evoked potentials: a possible biomarker of effective nerve activation.Front Neurosci. 2019; 13: 880https://doi.org/10.3389/fnins.2019.00880
- Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat.Brain Res. 2006; 1119: 124-132https://doi.org/10.1016/j.brainres.2006.08.048
- The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala.Behav Neurosci. 2004; 118: 79-88https://doi.org/10.1037/0735-7044.118.1.79
- The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy.Neurotherapeutics. 2014; 11: 612-622https://doi.org/10.1007/s13311-014-0272-3
- How is the norepinephrine system involved in the antiepileptic effects of vagus nerve stimulation?.Front Neurosci. 2021; 15790943https://doi.org/10.3389/fnins.2021.790943
- Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model.J Neurochem. 2011; 117: 461-469https://doi.org/10.1111/j.1471-4159.2011.07214.x
- Effects of vagal stimulation on experimentally induced seizures in rats.Epilepsia. 1990; 31: S7-S19https://doi.org/10.1111/j.1528-1157.1990.tb05852.x
- Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures.Epilepsy Res. 1995; 20: 221-227https://doi.org/10.1016/0920-1211(94)00083-9
- The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in children with refractory epilepsy: an exploratory study.Neuroimmunomodulation. 2012; 19: 352-358https://doi.org/10.1159/000341402
- Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood.Neuroimmunomodulation. 2011; 18: 52-56https://doi.org/10.1159/000315530
- The effects of vagus nerve stimulation on tryptophan metabolites in children with intractable epilepsy.Epilepsy Behav. 2014; 37: 133-138https://doi.org/10.1016/j.yebeh.2014.06.001
- Vagus nerve stimulation activates central nervous system structures in epileptic patients during PET H2(15)O blood flow imaging.Neurosurgery. 1996; 39 ([discussion: 430–431]. https://doi.org/10.1097/00006123-199608000-00061): 426-430
- Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation.Epilepsia. 2004; 45: 1064-1070https://doi.org/10.1111/j.0013-9580.2004.03104.x
- Cerebral activation during vagus nerve stimulation: a functional MR study.Epilepsia. 2002; 43: 1509-1514https://doi.org/10.1046/j.1528-1157.2002.16102.x
- Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy.Epilepsy Res. 2003; 55: 59-70https://doi.org/10.1016/s0920-1211(03)00107-4
- The functional connectivity study on the brainstem-cortical/subcortical structures in responders following cervical vagus nerve stimulation.Int J Dev Neurosci. 2020; 80: 679-686https://doi.org/10.1002/jdn.10064
- Interregional metabolic connectivity of 2-deoxy-2[18 F]fluoro-D-glucose positron emission tomography in vagus nerve stimulation for pediatric patients with epilepsy: a retrospective cross-sectional study.Epilepsia. 2018; 59: 2249-2259https://doi.org/10.1111/epi.14590
- The vagus afferent network: emerging role in translational connectomics.Neurosurg Focus. 2018; 45: E2https://doi.org/10.3171/2018.6.FOCUS18216
- Biomarkers of seizure response to vagus nerve stimulation: a scoping review.Epilepsia. 2020; 61: 2069-2085https://doi.org/10.1111/epi.16661
- Connectomic profiling identifies responders to vagus nerve stimulation.Ann Neurol. 2019; 86: 743-753https://doi.org/10.1002/ana.25574
- Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy.Neuroimage Clin. 2017; 16: 634-642https://doi.org/10.1016/j.nicl.2017.09.015
- Vagus nerve stimulation has no effect on awake EEG rhythms in humans.Epilepsia. 1993; 34: 299-304
- Increase in 20-50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation.Clin Neurophysiol. 2005; 116: 2026-2036
Ernst LD, Steffan PJ, Srikanth P, et al. Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation. J Clin Neurophysiol. 2023;40:37-44. https://dx.doi.org/10.1097/WNP.0000000000000847.
- EEG reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics.Front Neurol. 2019; 10: 392https://doi.org/10.3389/fneur.2019.00392
- Long term effects on epileptiform activity with vagus nerve stimulation in children.Seizure. 2005; 14: 527-533https://doi.org/10.1016/j.seizure.2005.07.004
- EEG changes with vagus nerve stimulation.J Clin Neurophysiol. 2001; 18: 434-441https://doi.org/10.1097/00004691-200109000-00008
- Effect of vagal nerve stimulation on interictal epileptiform discharges: a scalp EEG study.Epilepsia. 2002; 43: 1181-1188https://doi.org/10.1046/j.1528-1157.2002.08202.x
- Effect of chronic vagal nerve stimulation on interictal epileptiform discharges.Seizure. 2010; 19: 352-355https://doi.org/10.1016/j.seizure.2010.05.009
- Long-term effect of vagus nerve stimulation on interictal epileptiform discharges in refractory epilepsy.J Neurol Sci. 2009; 284: 96-102https://doi.org/10.1016/j.jns.2009.04.012
- The effect of vagus nerve stimulation on epileptiform activity recorded from hippocampal depth electrodes.Epilepsia. 2001; 42: 423-429https://doi.org/10.1046/j.1528-1157.2001.10900.x
- Modulation of seizure threshold by vagus nerve stimulation in an animal model for motor seizures.Acta Neurol Scand. 2010; 121: 271-276https://doi.org/10.1111/j.1600-0404.2009.01223.x
- Intensity-dependent modulatory effects of vagus nerve stimulation on cortical excitability.Acta Neurol Scand. 2013; 128: 391-396https://doi.org/10.1111/ane.12135
- Vagus nerve stimulation for epilepsy: is output current correlated with acute response?.Acta Neurol Scand. 2007; 116: 217-220https://doi.org/10.1111/j.1600-0404.2007.00878.x
- EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence.Med Hypotheses. 2010; 74: 855-856https://doi.org/10.1016/j.mehy.2009.11.031
- Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology.Neuroimage Clin. 2018; 19: 990-999https://doi.org/10.1016/j.nicl.2018.06.017
- A tutorial review of functional connectivity analysis methods and their interpretational pitfalls.Front Syst Neurosci. 2015; 9: 175https://doi.org/10.3389/fnsys.2015.00175
- Fundamentals of Brain Network Analysis.Academic Press, 2016
- VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy.Neurosci Lett. 2013; 536: 14-18https://doi.org/10.1016/j.neulet.2012.12.044
- Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources.Hum Brain Mapp. 2007; 28: 1178-1193https://doi.org/10.1002/hbm.20346
- Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG.Epilepsy Res. 2015; 113: 98-103https://doi.org/10.1016/j.eplepsyres.2015.03.018
- How does vagal nerve stimulation (VNS) change EEG brain functional connectivity?.Epilepsy Res. 2016; 126: 141-146https://doi.org/10.1016/j.eplepsyres.2016.06.008
- The effectiveness of vagus nerve stimulation in drug-resistant epilepsy correlates with vagus nerve stimulation-induced electroencephalography desynchronization.Brain Connect. 2020; 10: 566-577https://doi.org/10.1089/brain.2020.0798
- Vagus nerve stimulation elicits sleep EEG desynchronization and network changes in responder patients in epilepsy.Neurotherapeutics. 2021; 18: 2623-2638https://doi.org/10.1007/s13311-021-01124-4
- Defining epileptogenic networks: contribution of SEEG and signal analysis.Epilepsia. 2017; 58: 1131-1147https://doi.org/10.1111/epi.13791
- Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies.Brain. 2018; 141: 2966-2980https://doi.org/10.1093/brain/awy214
- On quantitative biomarkers of VNS therapy using EEG and ECG signals.IEEE Trans Biomed Eng. 2017; 64: 419-428https://doi.org/10.1109/TBME.2016.2554559
- Investigating the correlation between short-term effectiveness of VNS Therapy in reducing the severity of seizures and long-term responsiveness.Epilepsy Res. 2017; 133: 46-53https://doi.org/10.1016/j.eplepsyres.2017.04.008
- Laryngeal muscle-evoked potential recording as an indicator of vagal nerve fiber activation.Neuromodulation. 2022; 25: 461-470https://doi.org/10.1016/j.neurom.2022.01.014
- Human vagus nerve electrophysiology: a guide to vagus nerve stimulation parameters.J Clin Neurophysiol. 2001; 18: 429-433https://doi.org/10.1097/00004691-200109000-00007
- Vagus nerve stimulation applied with a rapid cycle has more profound influence on hippocampal electrophysiology than a standard cycle.Neurotherapeutics. 2016; 13: 592-602https://doi.org/10.1007/s13311-016-0432-8
- High-frequency burst vagal nerve simulation therapy in a natural primate model of genetic generalized epilepsy.Epilepsy Res. 2017; 138: 46-52https://doi.org/10.1016/j.eplepsyres.2017.10.010
- Voltage-sensitive dye imaging of neocortical spatiotemporal dynamics to afferent activation frequency.J Neurosci. 2001; 21: 9403-9413
- High intensity VNS disrupts VNS-mediated plasticity in motor cortex.Brain Res. 2021; 1756147332https://doi.org/10.1016/j.brainres.2021.147332
- The effect of medial pulvinar stimulation on temporal lobe seizures.Epilepsia. 2019; 60: e25-e30https://doi.org/10.1111/epi.14677
- VNS parameters for clinical response in epilepsy.Brain Stimulation. 2022; 15: 814-821https://doi.org/10.1016/j.brs.2022.05.016
Article info
Publication history
Footnotes
Source(s) of financial support: The authors reported no funding sources.
Conflict of Interest: Romain Carron received honoraria from LivaNova for sharing expertise on VNS surgical techniques during symposium. Fabrice Bartolomei received honoraria from LivaNova for giving talks at conferences and for participation in a board of experts. Maxine Dibue and Paolo Roncon are employees of LivaNova PLC and hold stock options. The remaining authors have no conflicts of interest to report.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy