Advertisement

High-Definition Transcranial Infraslow Pink-Noise Stimulation Can Influence Functional and Effective Cortical Connectivity in Individuals With Chronic Low Back Pain: A Pilot Randomized Placebo-Controlled Study

Published:October 19, 2022DOI:https://doi.org/10.1016/j.neurom.2022.08.450

      Abstract

      Introduction

      Pain can be regarded as an emergent property of multiple interacting, dynamically changing brain networks and thus needs a targeted treatment approach. A novel high-definition transcranial infraslow pink-noise stimulation (HD-tIPNS) technique was developed to modulate the key hubs of the three main nociceptive pathways simultaneously, ie, the pregenual anterior cingulate cortex (pgACC) (descending inhibitory pathway), the dorsal anterior cingulate cortex (dACC) (medial nociceptive pathway), and both somatosensory cortices (S1) (lateral nociceptive pathway). This study aimed to evaluate safety and verify whether a single session of HD-tIPNS may disrupt functional and effective connectivity between targeted cortical regions.

      Materials and Methods

      A pilot double-blind randomized two-arm placebo-controlled parallel trial was conducted. Participants (N = 30) with chronic low back pain were equally randomized to receive a single session of either sham stimulation or HD-tIPNS (targeting the pgACC, dACC, and bilateral S1). Primary outcomes included safety and electroencephalographic measures, and secondary outcomes included pain measures, collected after treatment. A Mann-Whitney U test was used to compare between-group differences in percentage changes with baseline for each outcome measures. A Wilcoxon signed-rank test was used to identify difference in effective connectivity measure before and after HD-tIPNS.

      Results

      No serious adverse events were reported. A significant decrease in instantaneous functional connectivity was noted between the pgACC and dACC (U = 47.0, Z = −2.72, p = 0.007) and the pgACC and left S1 (U = 41.0, Z = −2.97, p = 0.003) in the infraslow band after HD-tIPNS when compared with sham stimulation. A significant decrease in instantaneous effective connectivity was noted in the direction of the dACC to the pgACC (Z = −2.10, p = 0.035), in the infraslow band after HD-tIPNS when compared with baseline. No changes in clinical pain measures were detected.

      Conclusions

      HD-tIPNS can safely modulate the functional and effective connectivity between targeted pain-related cortical hubs. Further studies are warranted to evaluate whether repeated exposures to HD-tIPNS can incur clinical benefits through inducing changes in functional and effective connectivity at targeted cortical regions.

      Clinical Trial Registration

      The Clinicaltrials.gov registration number for the study is ACTRN12621001438842.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holland J.
        Complexity.
        Oxford University Press, 2014
        • Johnson N.
        Simply Complexity: A Clear Guide to Complexity Theory.
        2nd ed. Oneworld Publications, 2010
        • De Ridder D.
        • Vanneste S.
        • Freeman W.
        The Bayesian brain: phantom percepts resolve sensory uncertainty.
        Neurosci Biobehav Rev. 2014; 44: 4-15https://doi.org/10.1016/j.neubiorev.2012.04.001
        • Amaral L.A.
        • Díaz-Guilera A.
        • Moreira A.A.
        • Goldberger A.L.
        • Lipsitz L.A.
        Emergence of complex dynamics in a simple model of signaling networks.
        Proc Natl Acad Sci U S A. 2004; 101: 15551-15555https://doi.org/10.1073/pnas.0404843101
        • Bullmore E.
        • Sporns O.
        The economy of brain network organization.
        Nat Rev Neurosci. 2012; 13: 336-349https://doi.org/10.1038/nrn3214
      1. Wikipedia. Emergence. Accessed September 8, 2022. https://en.wikiquote.org/wiki/Emergence.

        • De Ridder D.
        • Vanneste S.
        • Smith M.
        • Adhia D.
        Pain and the triple network model.
        Front Neurol. 2022; 13757241https://doi.org/10.3389/fneur.2022.757241
        • Kong J.
        • Loggia M.L.
        • Zyloney C.
        • Tu P.
        • LaViolette P.
        • Gollub R.L.
        Exploring the brain in pain: activations, deactivations and their relation.
        Pain. 2010; 148: 257-267https://doi.org/10.1016/j.pain.2009.11.008
        • Bushnell M.C.
        • Ceko M.
        • Low L.A.
        Cognitive and emotional control of pain and its disruption in chronic pain.
        Nat Rev Neurosci. 2013; 14: 502-511https://doi.org/10.1038/nrn3516
        • Price D.D.
        Psychological and neural mechanisms of the affective dimension of pain.
        Science. 2000; 288: 1769-1772
        • Vanneste S.
        • De Ridder D.
        Chronic pain as a brain imbalance between pain input and pain suppression.
        Brain Commun. 2021; 3: fcab014
        • De Ridder D.
        • Adhia D.
        • Vanneste S.
        The anatomy of pain and suffering in the brain and its clinical implications.
        Neurosci Biobehav Rev. 2021; 130: 125-146
        • Baliki M.N.
        • Petre B.
        • Torbey S.
        • et al.
        Corticostriatal functional connectivity predicts transition to chronic back pain.
        Nat Neurosci. 2012; 15: 1117-1119
        • Coppieters I.
        • Meeus M.
        • Kregel J.
        • et al.
        Relations between brain alterations and clinical pain measures in chronic musculoskeletal pain: a systematic review.
        J Pain. 2016; 17: 949-962
        • Hashmi J.A.
        • Baliki M.N.
        • Huang L.
        • et al.
        Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits.
        Brain. 2013; 136: 2751-2768
        • Hemington K.S.
        • Rogachov A.
        • Cheng J.C.
        • et al.
        Patients with chronic pain exhibit a complex relationship triad between pain, resilience, and within- and cross-network functional connectivity of the default mode network.
        Pain. 2018; 159: 1621-1630
        • Kim J.
        • Mawla I.
        • Kong J.
        • et al.
        Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain.
        Pain. 2019; 160: 1594-1605
        • Kong J.
        • Spaeth R.B.
        • Wey H.Y.
        • et al.
        S1 is associated with chronic low back pain: a functional and structural MRI study.
        Mol Pain. 2013; 9: 43
        • Ossipov M.H.
        • Morimura K.
        • Porreca F.
        Descending pain modulation and chronification of pain.
        Curr Opin Support Palliat Care. 2014; 8: 143-151
        • Tu Y.
        • Jung M.
        • Gollub R.L.
        • et al.
        Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain.
        Pain. 2019; 160: 1308-1318
        • De Ridder D.
        • De Mulder G.
        • Verstraeten E.
        • Sunaert S.
        • Moller A.
        Somatosensory cortex stimulation for deafferentation pain.
        Acta Neurochir Suppl. 2007; 97: 67-74
        • De Ridder D.
        • Perera S.
        • Vanneste S.
        State of the art: novel applications for cortical stimulation.
        Neuromodulation. 2017; 20: 206-214https://doi.org/10.1111/ner.12593
        • De Ridder D.
        • Vanneste S.
        • Van Laere K.
        • Menovsky T.
        Chasing map plasticity in neuropathic pain.
        World Neurosurg. 2013; 80: 901.e1-901.e5https://doi.org/10.1016/j.wneu.2012.12.009
        • Leong S.L.
        • De Ridder D.
        • Vanneste S.
        • Sutherland W.
        • Ross S.
        • Manning P.
        High definition transcranial pink noise stimulation of anterior cingulate cortex on food craving: an explorative study.
        Appetite. 2018; 120: 673-678https://doi.org/10.1016/j.appet.2017.10.034
        • De Ridder D.
        • Maciaczyk J.
        • Vanneste S.
        The future of neuromodulation: smart neuromodulation.
        Expert Rev Med Devices. 2021; 18: 307-317https://doi.org/10.1080/17434440.2021.1909470
        • Buzsáki G.
        • Mizuseki K.
        The log-dynamic brain: how skewed distributions affect network operations.
        Nat Rev Neurosci. 2014; 15: 264-278https://doi.org/10.1038/nrn3687
        • Buzsáki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929https://doi.org/10.1126/science.1099745
        • Brandl F.
        • Weise B.
        • Mulej Bratec S.
        • et al.
        Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies.
        Neuropsychopharmacology. 2022; 47: 1071-1080https://doi.org/10.1038/s41386-022-01271-y
        • Baliki M.N.
        • Geha P.Y.
        • Apkarian A.V.
        • Chialvo D.R.
        Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics.
        J Neurosci. 2008; 28: 1398-1403https://doi.org/10.1523/JNEUROSCI.4123-07.2008
        • Baliki M.N.
        • Mansour A.R.
        • Baria A.T.
        • Apkarian A.V.
        Functional reorganization of the default mode network across chronic pain conditions.
        PLoS One. 2014; 9e106133https://doi.org/10.1371/journal.pone.0106133
        • Cauda F.
        • Sacco K.
        • Duca S.
        • et al.
        Altered resting state in diabetic neuropathic pain.
        PLoS One. 2009; 4e4542https://doi.org/10.1371/journal.pone.0004542
        • Grooms J.K.
        • Thompson G.J.
        • Pan W.J.
        • et al.
        Infraslow electroencephalographic and dynamic resting state network activity.
        Brain Connect. 2017; 7: 265-280https://doi.org/10.1089/brain.2017.0492
        • Thompson G.J.
        • Pan W.J.
        • Magnuson M.E.
        • Jaeger D.
        • Keilholz S.D.
        Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
        Neuroimage. 2014; 84: 1018-1031https://doi.org/10.1016/j.neuroimage.2013.09.029
        • Agulhon C.
        • Petravicz J.
        • McMullen A.B.
        • et al.
        What is the role of astrocyte calcium in neurophysiology?.
        Neuron. 2008; 59: 932-946https://doi.org/10.1016/j.neuron.2008.09.004
        • Alshelh Z.
        • Di Pietro F.
        • Youssef A.M.
        • et al.
        Chronic neuropathic pain: it’s about the rhythm.
        J Neurosci. 2016; 36: 1008-1018https://doi.org/10.1523/JNEUROSCI.2768-15.2016
        • Pirttimaki T.M.
        • Sims R.E.
        • Saunders G.
        • Antonio S.A.
        • Codadu N.K.
        • Parri H.R.
        Astrocyte-mediated neuronal synchronization properties revealed by false gliotransmitter release.
        J Neurosci. 2017; 37: 9859-9870https://doi.org/10.1523/JNEUROSCI.2761-16.2017
        • Semyanov A.
        • Henneberger C.
        • Agarwal A.
        Making sense of astrocytic calcium signals — from acquisition to interpretation.
        Nat Rev Neurosci. 2020; 21: 551-564https://doi.org/10.1038/s41583-020-0361-8
        • Albert R.
        • Jeong H.
        • Barabasi A.L.
        Error and attack tolerance of complex networks.
        Nature. 2000; 406: 378-382https://doi.org/10.1038/35019019
        • Bittar R.G.
        • Kar-Purkayastha I.
        • Owen S.L.
        • et al.
        Deep brain stimulation for pain relief: a meta-analysis.
        J Clin Neurosci. 2005; 12: 515-519https://doi.org/10.1016/j.jocn.2004.10.005
        • Farrar J.T.
        • Young Jr., J.P.
        • LaMoreaux L.
        • Werth J.L.
        • Poole M.R.
        Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale.
        Pain. 2001; 94: 149-158https://doi.org/10.1016/S0304-3959(01)00349-9
        • Roland M.
        • Morris R.
        A study of the natural history of low-back pain. Part II: development of guidelines for trials of treatment in primary care.
        Spine. 1983; 8: 145-150
        • Roland M.
        • Morris R.
        A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain.
        Spine (Phila Pa 1976). 1983; 8: 141-144https://doi.org/10.1097/00007632-198303000-00004
        • Dionne C.E.
        • Dunn K.M.
        • Croft P.R.
        • et al.
        A consensus approach toward the standardization of back pain definitions for use in prevalence studies.
        Spine. 2008; 33: 95-103
        • Grotle M.
        • Brox J.I.
        • Vøllestad N.K.
        Concurrent comparison of responsiveness in pain and functional status measurements used for patients with low back pain.
        Spine. 2004; 29: E492-E501
        • Treede R.D.
        • Rief W.
        • Barke A.
        • et al.
        A classification of chronic pain for ICD-11.
        Pain. 2015; 156: 1003-1007
        • Neblett R.
        • Cohen H.
        • Choi Y.
        • et al.
        The Central Sensitization Inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample.
        J Pain. 2013; 14: 438-445https://doi.org/10.1016/j.jpain.2012.11.012
        • Mayer T.G.
        • Neblett R.
        • Cohen H.
        • et al.
        The development and psychometric validation of the central sensitization inventory.
        Pain Pract. 2012; 12: 276-285https://doi.org/10.1111/j.1533-2500.2011.00493.x
        • Freynhagen R.
        • Tölle T.R.
        • Gockel U.
        • Baron R.
        The painDETECT project — far more than a screening tool on neuropathic pain.
        Curr Med Res Opin. 2016; 32: 1033-1057
        • Parkitny L.
        • McAuley J.H.
        • Walton D.
        • et al.
        Rasch analysis supports the use of the depression, anxiety, and stress scales to measure mood in groups but not in individuals with chronic low back pain.
        J Clin Epidemiol. 2012; 65: 189-198https://doi.org/10.1016/j.jclinepi.2011.05.010
        • Osman A.
        • Barrios F.X.
        • Gutierrez P.M.
        • Kopper B.A.
        • Merrifield T.
        • Grittmann L.
        The Pain Catastrophizing Scale: further psychometric evaluation with adult samples.
        J Behav Med. 2000; 23: 351-365https://doi.org/10.1023/a:1005548801037
        • Wertli M.M.
        • Eugster R.
        • Held U.
        • Steurer J.
        • Kofmehl R.
        • Weiser S.
        Catastrophizing—a prognostic factor for outcome in patients with low back pain: a systematic review.
        Spine J. 2014; 14: 2639-2657https://doi.org/10.1016/j.spinee.2014.03.003
        • Roelofs J.
        • Peters M.L.
        • McCracken L.
        • Vlaeyen J.W.S.
        The pain vigilance and awareness questionnaire (PVAQ): further psychometric evaluation in fibromyalgia and other chronic pain syndromes.
        Pain. 2003; 101: 299-306https://doi.org/10.1016/S0304-3959(02)00338-X
        • Ruffini G.
        • Fox M.D.
        • Ripolles O.
        • Miranda P.C.
        • Pascual-Leone A.
        Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.
        Neuroimage. 2014; 89: 216-225
        • Straudi S.
        • Buja S.
        • Baroni A.
        • et al.
        The effects of transcranial direct current stimulation (tDCS) combined with group exercise treatment in subjects with chronic low back pain: a pilot randomized control trial.
        Clin Rehabil. 2018; 32: 1348-1356https://doi.org/10.1177/0269215518777881
        • Schabrun S.M.
        • Jones E.
        • Elgueta Cancino E.L.
        • Hodges P.W.
        Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention.
        Brain Stimul. 2014; 7: 451-459https://doi.org/10.1016/j.brs.2014.01.058
        • Schabrun S.M.
        • Burns E.
        • Thapa T.
        • Hodges P.
        The response of the primary motor cortex to neuromodulation is altered in chronic low back pain: a preliminary study.
        Pain Med. 2018; 19: 1227-1236https://doi.org/10.1093/pm/pnx168
        • Ouellette A.L.
        • Liston M.B.
        • Chang W.J.
        • Walton D.M.
        • Wand B.M.
        • Schabrun S.M.
        Safety and feasibility of transcranial direct current stimulation (tDCS) combined with sensorimotor retraining in chronic low back pain: a protocol for a pilot randomised controlled trial.
        BMJ Open. 2017; 7e013080https://doi.org/10.1136/bmjopen-2016-013080
        • O’Connell N.E.
        • Cossar J.
        • Marston L.
        • et al.
        Transcranial direct current stimulation of the motor cortex in the treatment of chronic nonspecific low back pain: a randomized, double-blind exploratory study.
        Clin J Pain. 2013; 29: 26-34https://doi.org/10.1097/AJP.0b013e318247ec09
        • Mariano T.Y.
        • Burgess F.W.
        • Bowker M.
        • et al.
        Transcranial direct current stimulation for affective symptoms and functioning in chronic low back pain: a pilot double-blinded, randomized, placebo-controlled trial.
        Pain Med. 2019; 20: 1166-1177https://doi.org/10.1093/pm/pny188
        • Luedtke K.
        • Rushton A.
        • Wright C.
        • et al.
        Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: sham controlled double blinded randomised controlled trial.
        BMJ. 2015; 350: h1640https://doi.org/10.1136/bmj.h1640
        • Larie M.S.
        • Esfandiarpour F.
        • Riahi F.
        • Derisfard F.
        • Parnianpour M.
        Effects of cortical and peripheral electrical stimulation on brain activity in individuals with chronic low back pain.
        PTJ. 2019; 9: 39-46https://doi.org/10.32598/PTJ.9.1.39
        • Jafarzadeh A.
        • Ehsani F.
        • Yosephi M.H.
        • Zoghi M.
        • Jaberzadeh S.
        Concurrent postural training and M1 anodal transcranial direct current stimulation improve postural impairment in patients with chronic low back pain.
        J Clin Neurosci. 2019; 68: 224-234https://doi.org/10.1016/j.jocn.2019.07.017
        • Hazime F.A.
        • Baptista A.F.
        • de Freitas D.G.
        • et al.
        Treating low back pain with combined cerebral and peripheral electrical stimulation: a randomized, double-blind, factorial clinical trial.
        Eur J Pain. 2017; 21: 1132-1143https://doi.org/10.1002/ejp.1037
        • Ahn S.
        • Prim J.H.
        • Alexander M.L.
        • McCulloch K.L.
        • Fröhlich F.
        Identifying and engaging neuronal oscillations by transcranial alternating current stimulation in patients with chronic low back pain: a randomized, crossover, double-blind, sham-controlled pilot study.
        J Pain. 2019; 20: 277.e1-277.e11https://doi.org/10.1016/j.jpain.2018.09.004
        • Lefaucheur J.P.
        • Antal A.
        • Ayache S.S.
        • et al.
        Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).
        Clin Neurophysiol. 2017; 128: 56-92
        • Nikolin S.
        • Huggins C.
        • Martin D.
        • Alonzo A.
        • Loo C.K.
        Safety of repeated sessions of transcranial direct current stimulation: a systematic review.
        Brain Stimul. 2018; 11: 278-288
        • Woods A.J.
        • Antal A.
        • Bikson M.
        • et al.
        A technical guide to tDCS, and related non-invasive brain stimulation tools.
        Clin Neurophysiol. 2016; 127: 1031-1048
        • Neri F.
        • Mencarelli L.
        • Menardi A.
        • et al.
        A novel tDCS sham approach based on model-driven controlled shunting.
        Brain Stimul. 2020; 13: 507-516
        • Ruffini G.
        • Wendling F.
        • Merlet I.
        • et al.
        Transcranial current brain stimulation (tCS): models and technologies.
        IEEE Trans Neural Syst Rehabil Eng. 2013; 21: 333-345
        • Ruffini G.
        • Wendling F.
        • Sanchez-Todo R.
        • Santarnecchi E.
        Targeting brain networks with multichannel transcranial current stimulation (tCS).
        Current Opinion in Biomedical Engineering. 2018; 8: 70-77
        • Dagan M.
        • Herman T.
        • Harrison R.
        • et al.
        Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease.
        Mov Disord. 2018; 33: 642-646
        • Pascual-Marqui R.D.
        Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details.
        Methods Find Exp Clin Pharmacol. 2002; 24: 5-12
        • Nichols T.E.
        • Holmes A.P.
        Nonparametric permutation tests for functional neuroimaging: a primer with examples.
        Hum Brain Mapp. 2002; 15: 1-25
      2. Pascual-Marqui RD. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. Preprint. Posted online October 17, 2007. arXiv 0710.3341. doi:10.48550/arXiv.0710.3341

        • Geweke J.
        Measurement of linear dependence and feedback between multiple time series.
        J Am Stat Assoc. 1982; 77: 304-313
        • Granger C.W.J.
        Investigating causal relations by econometric models and cross-spectral methods.
        Econometrica. 1969; 37: 424-438
        • Pascual-Marqui R.D.
        • Biscay R.J.
        • Bosch-Bayard J.
        • et al.
        Assessing direct paths of intracortical causal information flow of oscillatory activity with the isolated effective coherence (iCoh).
        Front Hum Neurosci. 2014; 8: 448
        • Valdes-Sosa P.A.
        • Roebroeck A.
        • Daunizeau J.
        • Friston K.
        Effective connectivity: influence, causality and biophysical modeling.
        Neuroimage. 2011; 58: 339-361
        • Rosenbaum J.F.
        • Fava M.
        • Hoog S.L.
        • Ascroft R.C.
        • Krebs W.B.
        Selective serotonin reuptake inhibitor discontinuation syndrome: a randomized clinical trial.
        Biol Psychiatry. 1998; 44: 77-87
        • Aladjalova N.A.
        Infra-slow rhythmic oscillations of the steady potential of the cerebral cortex.
        Nature. 1957; 179: 957-959https://doi.org/10.1038/179957a0
        • De Ridder D.
        • Leong S.L.
        • Manning P.
        • Vanneste S.
        • Glue P.
        Anterior cingulate implant for obsessive-compulsive disorder.
        World Neurosurg. 2017; 97 (754.e7–754.e16)
        • Mabil P.
        • Huidobro N.
        • Torres-Ramirez O.
        • et al.
        Noisy light augments the Na+ current in somatosensory pyramidal neurons of optogenetic transgenic mice.
        Front Neurosci. 2020; 14: 490
        • Remedios L.
        • Mabil P.
        • Flores-Hernández J.
        • et al.
        Effects of short-term random noise electrical stimulation on dissociated pyramidal neurons from the cerebral cortex.
        Neuroscience. 2019; 404: 371-386
        • Huidobro N.
        • Gutierrez-Gomez A.
        • Gutierrez J.
        • et al.
        Augmenting global coherence in EEG signals with binaural or monaural noises.
        Brain Topogr. 2020; 33: 461-476
        • De Ridder D.
        • Vanneste S.
        The Bayesian brain in imbalance: medial, lateral and descending pathways in tinnitus and pain: a perspective.
        Prog Brain Res. 2021; 262: 309-334https://doi.org/10.1016/bs.pbr.2020.07.012
        • De Ridder D.
        • Vanneste S.
        • Plazier M.
        • Vancamp T.
        Mimicking the brain: evaluation of St Jude Medical’s Prodigy Chronic Pain System with Burst Technology.
        Expert Rev Med Devices. 2015; 12: 143-150https://doi.org/10.1586/17434440.2015.985652
        • Strube A.
        • Rose M.
        • Fazeli S.
        • Büchel C.
        The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception.
        Elife. 2021; 10https://doi.org/10.7554/eLife.62809
        • Nickel M.M.
        • Tiemann L.
        • Hohn V.D.
        • et al.
        Temporal-spectral signaling of sensory information and expectations in the cerebral processing of pain.
        Proc Natl Acad Sci U S A. 2022; 119https://doi.org/10.1073/pnas.2116616119