Advertisement

Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia

Published:October 27, 2022DOI:https://doi.org/10.1016/j.neurom.2022.09.004

      Abstract

      Objectives

      Generalization (or near-transfer) effects of an intervention to tasks not explicitly trained are the most desirable intervention outcomes. However, they are rarely reported and even more rarely explained. One hypothesis for generalization effects is that the tasks improved share the same brain function/computation with the intervention task. We tested this hypothesis in this study of transcranial direct current stimulation (tDCS) over the left inferior frontal gyrus (IFG) that is claimed to be involved in selective semantic retrieval of information from the temporal lobes.

      Materials and Methods

      In this study, we examined whether tDCS over the left IFG in a group of patients with primary progressive aphasia (PPA), paired with a lexical/semantic retrieval intervention (oral and written naming), may specifically improve semantic fluency, a nontrained near-transfer task that relies on selective semantic retrieval, in patients with PPA.

      Results

      Semantic fluency improved significantly more in the active tDCS than in the sham tDCS condition immediately after and two weeks after treatment. This improvement was marginally significant two months after treatment. We also found that the active tDCS effect was specific to tasks that require this IFG computation (selective semantic retrieval) but not to other tasks that may require different computations of the frontal lobes.

      Conclusions

      We provided interventional evidence that the left IFG is critical for selective semantic retrieval, and tDCS over the left IFG may have a near-transfer effect on tasks that depend on the same computation, even if they are not specifically trained.

      Clinical Trial Registration

      The Clinicaltrials.gov registration number for the study is NCT02606422.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Price C.J.
        A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language and reading.
        NeuroImage. 2012; 62: 816-847
        • Hickok G.
        • Poeppel D.
        The cortical organization of speech processing.
        Nat Rev Neurosci. 2007; 8: 393-402https://doi.org/10.1038/nrn2113
        • Hillis A.E.
        • Kane A.
        • Tuffiash E.
        • et al.
        Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke.
        Brain Lang. 2001; 79: 495-510
        • Hillis A.E.
        • Barker P.B.
        • Beauchamp N.J.
        • Winters B.D.
        • Mirski M.
        • Wityk R.J.
        Restoring blood pressure reperfused Wernicke’s area and improved language.
        Neurology. 2001; 56: 670-672
        • Cadoret G.
        • Pike G.B.
        • Petrides M.
        Selective activation of the ventrolateral prefrontal cortex in the human brain during active retrieval processing.
        Eur J Neurosci. 2001; 14: 1164-1170
        • Thompson-Schill S.L.
        • D’Esposito M.
        • Aguirre G.K.
        • Farah M.J.
        Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation.
        Proc Natl Acad Sci U S A. 1997; 94: 14792-14797
        • Thompson-Schill S.L.
        • Swick D.
        • Farah M.J.
        • D’Esposito M.
        • Kan I.P.
        • Knight R.T.
        Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings.
        Proc Natl Acad Sci U S A. 1998; 95: 15855-15860
        • Thompson-Schill S.L.
        • Bedny M.
        • Goldberg R.F.
        The frontal lobes and the regulation of mental activity.
        Curr Opin Neurobiol. 2005; 15: 219-224https://doi.org/10.1016/j.conb.2005.03.006
        • Amunts K.
        • Weiss P.H.
        • Mohlberg H.
        • et al.
        Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45.
        NeuroImage. 2004; 22: 42-56https://doi.org/10.1016/j.neuroimage.2003.12.031
        • Heim S.
        • Eickhoff S.B.
        • Amunts K.
        Specialisation in Broca’s region for semantic, phonological, and syntactic fluency?.
        NeuroImage. 2008; 40: 1362-1368
        • Mesulam M.M.
        Slowly progressive aphasia without generalized dementia.
        Ann Neurol. 1982; 11: 592-598
        • Mesulam M.M.
        Primary progressive aphasia.
        Ann Neurol. 2001; 49: 425-432
        • Mesulam M.M.
        Primary progressive aphasia — a language-based dementia.
        N Engl J Med. 2003; 349: 1535-1542https://doi.org/10.1056/NEJMra022435
        • Gorno-Tempini M.L.
        • Hillis A.E.
        • Weintraub S.
        • et al.
        Classification of primary progressive aphasia and its variants.
        Neurology. 2011; 76: 1006-1014
        • Grossman M.
        Progressive aphasic syndromes: clinical and theoretical advances.
        Curr Opin Neurol. 2002; 15: 409-413
        • Wilson S.M.
        • Ogar J.M.
        • Laluz V.
        • et al.
        Automated MRI-based classification of primary progressive aphasia variants.
        NeuroImage. 2009; 47: 1558-1567
        • Riello M.
        • Frangakis C.
        • Ficek B.
        • et al.
        Neural correlates of letter and semantic fluency in primary progressive aphasia.
        Brain Sci. 2022; 12: 1
        • Libon D.J.
        • McMillan C.
        • Gunawardena D.
        • et al.
        Neurocognitive contributions to verbal fluency deficits in frontotemporal lobar degeneration.
        Neurology. 2009; 73: 535-542https://doi.org/10.1212/WNL.0b013e3181b2a4f5
        • Lezak M.
        • Loring D.
        • Howieson D.
        Neuropsychological Assessment. Vol. 4. Oxford University Press, 2004
        • Baldo J.V.
        • Shimamura A.P.
        Letter and category fluency in patients with frontal lobe lesions.
        Neuropsychology. 1998; 12: 259-267https://doi.org/10.1037//0894-4105.12.2.259
        • Baldo J.V.
        • Schwartz S.
        • Wilkins D.
        • Dronkers N.F.
        Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping.
        J Int Neuropsychol Soc. 2006; 12: 896-900
        • Shao Z.
        • Janse E.
        • Visser K.
        • Meyer A.S.
        What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults.
        Front Psychol. 2014; 5: 772
        • Henry J.D.
        • Crawford J.R.
        Verbal fluency deficits in Parkinson’s disease: a meta-analysis.
        J Int Neuropsychol Soc. 2004; 10: 608-622
        • Henry J.D.
        • Crawford J.R.
        • Phillips L.H.
        Verbal fluency performance in dementia of the Alzheimer’s type: a meta-analysis.
        Neuropsychologia. 2004; 42: 1212-1222
        • Henry J.D.
        • Crawford J.R.
        A meta-analytic review of verbal fluency performance following focal cortical lesions.
        Neuropsychology. 2004; 18: 284-295
        • Laisney M.
        • Matuszewski V.
        • Mézenge F.
        • et al.
        The underlying mechanisms of verbal fluency deficit in frontotemporal dementia and semantic dementia.
        J Neurol. 2009; 256: 1083-1094
        • Binder J.R.
        • Desai R.H.
        The neurobiology of semantic memory.
        Trends Cogn Sci. 2011; 15: 527-536
      1. Petrides M. Broca’s area in the human and the non-human primate brain. In: Grodzinsky Y, Amunts K, eds. Broca’s Region. Oxford; 2006:31–46.

        • Rolheiser T.
        • Stamatakis E.A.
        • Tyler L.K.
        Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule.
        J Neurosci. 2011; 31: 16949-16957
        • Tyler L.K.
        • Marslen-Wilson W.D.
        • Randall B.
        • et al.
        Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage.
        Brain. 2011; 134: 415-431
        • Frey S.
        • Campbell J.S.
        • Pike G.B.
        • Petrides M.
        Dissociating the human language pathways with high angular resolution diffusion fiber tractography.
        J Neurosci. 2008; 28: 11435-11444
        • Saur D.
        • Kreher B.W.
        • Schnell S.
        • et al.
        Ventral and dorsal pathways for language.
        Proc Natl Acad Sci U S A. 2008; 105: 18035-18040https://doi.org/10.1073/pnas.0805234105
        • Duffau H.
        • Gatignol P.
        • Moritz-Gasser S.
        • Mandonnet E.
        Is the left uncinate fasciculus essential for language? A cerebral stimulation study.
        J Neurol. 2009; 256: 382-389
        • Harvey D.Y.
        • Wei T.
        • Ellmore T.M.
        • Hamilton A.C.
        • Schnur T.T.
        Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control.
        Neuropsychologia. 2013; 51: 789-801https://doi.org/10.1016/j.neuropsychologia.2013.01.028
        • Papagno C.
        • Miracapillo C.
        • Casarotti A.
        • et al.
        What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval.
        Brain. 2011; 134: 405-414
        • Rofes A.
        • Mandonnet E.
        • de Aguiar V.
        • Rapp B.
        • Tsapkini K.
        • Miceli G.
        Language processing from the perspective of electrical stimulation mapping.
        Cogn Neuropsychol. 2019; 36: 117-139
        • Hillis A.E.
        • Kleinman J.T.
        • Newhart M.
        • et al.
        Restoring cerebral blood flow reveals neural regions critical for naming.
        J Neurosci. 2006; 26: 8069-8073
        • Roncero C.
        • Service E.
        • De Caro M.
        • et al.
        Maximizing the treatment benefit of tDCS in neurodegenerative anomia.
        Front Neurosci. 2019; 13: 1231
        • McConathey E.M.
        • White N.C.
        • Gervits F.
        • et al.
        Baseline performance predicts tDCS-mediated improvements in language symptoms in primary progressive aphasia.
        Front Hum Neurosci. 2017; 11: 347
        • Gervits F.
        • Ash S.
        • Coslett H.B.
        • Rascovsky K.
        • Grossman M.
        • Hamilton R.
        Transcranial direct current stimulation for the treatment of primary progressive aphasia: an open-label pilot study.
        Brain Lang. 2016; 162: 35-41
        • Tsapkini K.
        • Webster K.T.
        • Ficek B.N.
        • et al.
        Electrical brain stimulation in different variants of primary progressive aphasia: a randomized clinical trial.
        Alzheimers Dement (N Y). 2018; 4: 461-472
        • Fenner A.S.
        • Webster K.T.
        • Ficek B.N.
        • Frangakis C.E.
        • Tsapkini K.
        Written verb naming improves after tDCS over the left IFG in primary progressive aphasia.
        Front Psychol. 2019; 10: 1396https://doi.org/10.3389/fpsyg.2019.01396
        • Themistocleous C.
        • Webster K.
        • Tsapkini K.
        Effects of tDCS on sound duration in patients with apraxia of speech in primary progressive aphasia.
        Brain Sci. 2021; 11: 335https://doi.org/10.3390/brainsci11030335
        • Cotelli M.
        • Fertonani A.
        • Miozzo A.
        • et al.
        Anomia training and brain stimulation in chronic aphasia.
        Neuropsychol Rehabil. 2011; 21: 717-741
        • Cotelli M.
        • Manenti R.
        • Petesi M.
        • et al.
        Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training.
        J Alzheimers Dis. 2014; 39: 799-808
        • Price A.R.
        • Peelle J.E.
        • Bonner M.F.
        • Grossman M.
        • Hamilton R.H.
        Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation.
        J Neurosci. 2016; 36: 3829-3838https://doi.org/10.1523/JNEUROSCI.3120-15.2016
        • Chesters J.
        • Möttönen R.
        • Watkins K.E.
        Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.
        Brain. 2018; 141: 1161-1171
        • Baker J.M.
        • Rorden C.
        • Fridriksson J.
        Using transcranial direct-current stimulation to treat stroke patients with aphasia.
        Stroke. 2010; 41: 1229-1236
        • Chrysikou E.G.
        • Hamilton R.H.
        Noninvasive brain stimulation in the treatment of aphasia: exploring interhemispheric relationships and their implications for neurorehabilitation.
        Restor Neurol Neurosci. 2011; 29: 375-394
        • Fiori V.
        • Coccia M.
        • Marinelli C.V.
        • et al.
        Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects.
        J Cogn Neurosci. 2011; 23: 2309-2323
        • Fridriksson J.
        • Richardson J.D.
        • Baker J.M.
        • Rorden C.
        Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study.
        Stroke. 2011; 42: 819-821
        • Kang E.K.
        • Kim Y.K.
        • Sohn H.M.
        • Cohen L.G.
        • Paik N.J.
        Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area.
        Restor Neurol Neurosci. 2011; 29: 141-152
        • Marangolo P.
        • Marinelli C.V.
        • Bonifazi S.
        • et al.
        Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics.
        Behav Brain Res. 2011; 225: 498-504
        • Monti A.
        • Cogiamanian F.
        • Marceglia S.
        • et al.
        Improved naming after transcranial direct current stimulation in aphasia.
        J Neurol Neurosurg Psychiatry. 2008; 79: 451-453
        • Tippett D.C.
        • Hillis A.E.
        • Tsapkini K.
        Treatment of primary progressive aphasia.
        Curr Treat Options Neurol. 2015; 17: 362
        • Cotelli M.
        • Manenti R.
        • Ferrari C.
        • Gobbi E.
        • Macis A.
        • Cappa S.F.
        Effectiveness of language training and non-invasive brain stimulation on oral and written naming performance in Primary Progressive Aphasia: a meta-analysis and systematic review.
        Neurosci Biobehav Rev. 2020; 108: 498-525https://doi.org/10.1016/j.neubiorev.2019.12.003
        • Nissim N.R.
        • Moberg P.J.
        • Hamilton R.H.
        Efficacy of noninvasive brain stimulation (tDCS or TMS) paired with language therapy in the treatment of primary progressive aphasia: an exploratory meta-analysis.
        Brain Sci. 2020; 10: 597
        • Coemans S.
        • Struys E.
        • Vandenborre D.
        • et al.
        A systematic review of transcranial direct current stimulation in primary progressive aphasia: methodological considerations.
        Front Aging Neurosci. 2021; 13710818
        • Gervits F.
        • Ash S.
        • Coslett H.B.
        • et al.
        Transcranial direct current stimulation for the treatment of primary progressive aphasia: an open-label pilot study.
        Brain Lang. 2016; 162: 35-41
        • Roncero C.
        • Kniefel H.
        • Service E.
        • Thiel A.
        • Probst S.
        • Chertkow H.
        Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia.
        Alzheimers Dement (N Y). 2017; 3: 247-253
        • Wechsler D.
        Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R).
        The Psychological Corporation, 1981
        • Cattaneo Z.
        • Pisoni A.
        • Papagno C.
        Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals.
        Neuroscience. 2011; 183: 64-70
        • Penolazzi B.
        • Pastore M.
        • Mondini S.
        Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency.
        Behav Brain Res. 2013; 248: 129-135https://doi.org/10.1016/j.bbr.2013.04.007
        • Tao Y.
        • Ficek B.
        • Wang Z.
        • Rapp B.
        • Tsapkini K.
        Selective functional network changes following tDCS-augmented language treatment in primary progressive aphasia.
        Front Aging Neurosci. 2021; 13681043https://doi.org/10.3389/fnagi.2021.681043
        • Ficek B.N.
        • Wang Z.
        • Zhao Y.
        • et al.
        The effect of tDCS on functional connectivity in primary progressive aphasia.
        NeuroImage Clin. 2018; 19: 703-715https://doi.org/10.1016/j.nicl.2018.05.023
        • Thompson-Schill S.L.
        • Aguirre G.K.
        • D’Esposito M.
        • Farah M.J.
        A neural basis for category and modality specificity of semantic knowledge.
        Neuropsychologia. 1999; 37: 671-676
        • Tombaugh T.N.
        Trail Making Test A and B: normative data stratified by age and education.
        Arch Clin Neuropsychol. 2004; 19: 203-214
        • Kroenke K.
        • Spitzer R.L.
        • Williams J.B.
        The PHQ-9: validity of a brief depression severity measure.
        J Gen Intern Med. 2001; 16: 606-613
        • Knopman D.S.
        • Kramer J.H.
        • Boeve B.F.
        • et al.
        Development of methodology for conducting clinical trials in frontotemporal lobar degeneration.
        Brain. 2008; 131: 2957-2968
        • Homan R.W.
        The 10–20 electrode system and cerebral location.
        Am J EEG Technol. 1988; 28: 269-279https://doi.org/10.1080/00029238.1988.11080272
        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850
        • Rapp B.
        • Glucroft B.
        The benefits and protective effects of behavioural treatment for dysgraphia in a case of primary progressive aphasia.
        Aphasiology. 2009; 23: 236-265
        • Beeson P.M.
        • Egnor H.
        Combining treatment for written and spoken naming.
        J Int Neuropsychol Soc. 2006; 12: 816-827
        • Benton A.L.
        • Sivan A.B.
        • des Hamsher K.
        • Spreen O.
        Contributions to Neuropsychological Assessment: A Clinical Manual.
        Oxford University Press, 1994
        • DeMarco A.T.
        • Turkeltaub P.E.
        Functional anomaly mapping reveals local and distant dysfunction caused by brain lesions.
        Neuroimage. 2020; 215116806https://doi.org/10.1016/j.neuroimage.2020.116806
        • Lazar R.M.
        • Minzer B.
        • Antoniello D.
        • Festa J.R.
        • Krakauer J.W.
        • Marshall R.S.
        Improvement in aphasia scores after stroke is well predicted by initial severity.
        Stroke. 2010; 41: 1485-1488
        • van der Laan M.
        • Rose S.
        Targeted Learning: Prediction and Causal Inference for Observational and Experimental Data.
        Springer, 2011
        • Gruber S.
        • Laan M. van der
        tmle: an R package for targeted maximum likelihood estimation.
        J Stat Softw. 2012; 51: 1-35https://doi.org/10.18637/jss.v051.i13
        • Glass G.V.
        • McGaw B.
        • Smith M.L.
        Meta-Analysis in Social Science Research.
        Sage, 1981
        • Freeman P.R.
        The performance of the two-stage analysis of two-treatment, two-period crossover trials.
        Stat Med. 1989; 8: 1421-1432
        • Li T.
        • Yu T.
        • Hawkins B.S.
        • Dickersin K.
        Design, analysis, and reporting of crossover trials for inclusion in a meta-analysis.
        PLoS One. 2015; 10e0133023https://doi.org/10.1371/journal.pone.0133023
        • Tsapkini K.
        • Frangakis C.
        • Gomez Y.
        • Davis C.
        • Hillis A.E.
        Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: preliminary results and challenges.
        Aphasiology. 2014; 28: 1112-1130
        • Petrides M.
        Neuroanatomy of Language Regions of the Human Brain.
        Academic Press, 2014
        • Nozari N.
        • Hepner C.R.
        To select or to wait? The importance of criterion setting in debates of competitive lexical selection.
        Cogn Neuropsychol. 2019; 36: 193-207
        • Meinzer M.
        • Lindenberg R.
        • Antonenko D.
        • Flaisch T.
        • Flöel A.
        Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.
        J Neurosci. 2013; 33: 12470-12478
        • Hosseini M.
        • McConathey E.M.
        • Ungrady M.
        • Grossman M.
        • Coslett H.B.
        • Hamilton R.H.
        Proceedings# 10: transcranial direct current stimulation mediates improvements in verbal fluency for patients with primary progressive aphasia.
        Brain Stimulation. 2019; 12: e69-e71https://doi.org/10.1016/j.brs.2018.12.179
        • Petrides M.
        Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies.
        Ann N Y Acad Sci. 1995; 769: 85-96
        • Costafreda S.G.
        • Fu C.H.Y.
        • Lee L.
        • Everitt B.
        • Brammer M.J.
        • David A.S.
        A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus.
        Hum Brain Mapp. 2006; 27: 799-810https://doi.org/10.1002/hbm.20221
        • Katzev M.
        • Tüscher O.
        • Hennig J.
        • Weiller C.
        • Kaller C.P.
        Revisiting the functional specialization of left inferior frontal gyrus in phonological and semantic fluency: the crucial role of task demands and individual ability.
        J Neurosci. 2013; 33: 7837-7845https://doi.org/10.1523/JNEUROSCI.3147-12.2013
        • Friederici A.D.
        Pathways to language: fiber tracts in the human brain.
        Trends Cogn Sci. 2009; 13: 175-181
        • Petrides M.
        • Pandya D.N.
        Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey.
        PLoS Biol. 2009; 7e1000170https://doi.org/10.1371/journal.pbio.1000170
        • Zhao Y.
        • Ficek B.
        • Webster K.
        • et al.
        White matter integrity predicts electrical stimulation (tDCS) and language therapy effects in primary progressive aphasia.
        Neurorehabil Neural Repair. 2021; 35: 44-57https://doi.org/10.1177/1545968320971741
        • Agosta F.
        • Galantucci S.
        • Canu E.
        • et al.
        Disruption of structural connectivity along the dorsal and ventral language pathways in patients with nonfluent and semantic variant primary progressive aphasia: a DT MRI study and a literature review.
        Brain Lang. 2013; 127: 157-166
        • Mandelli M.L.
        • Vilaplana E.
        • Brown J.A.
        • et al.
        Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.
        Brain. 2016; 139: 2778-2791
        • Mummery C.J.
        • Patterson K.
        • Wise R.J.
        • Vandenberghe R.
        • Price C.J.
        • Hodges J.R.
        Disrupted temporal lobe connections in semantic dementia.
        Brain. 1999; 122: 61-73
        • Race D.S.
        • Tsapkini K.
        • Crinion J.
        • et al.
        An area essential for linking word meanings to word forms: evidence from primary progressive aphasia.
        Brain Lang. 2013; 127: 167-176
        • Riello M.
        • Faria A.V.
        • Ficek B.
        • et al.
        The role of language severity and education in explaining performance on object and action naming in primary progressive aphasia.
        Front Aging Neurosci. 2018; 10: 346https://doi.org/10.3389/fnagi.2018.00346
        • Baldo J.V.
        • Dronkers N.F.
        The role of inferior parietal and inferior frontal cortex in working memory.
        Neuropsychology. 2006; 20: 529-538
        • Brunoni A.R.
        • Valiengo L.
        • Baccaro A.
        • et al.
        Sertraline vs. ELectrical Current Therapy for Treating Depression Clinical Trial–SELECT TDCS: design, rationale and objectives.
        Contemp Clin Trials. 2011; 32: 90-98
        • Friederici A.D.
        The neuroanatomical pathway model of language: syntactic and semantic networks.
        in: Neurobiology of Language. Elsevier, 2015: 349-356
      2. Peristeri E, Wang Z, Herrmann O, Caffo B, Frangakis C, Tsapkini K. Transcranial direct current stimulation over the left inferior frontal gyrus improves sentence comprehension. Preprint. Posted online September 10, 2020. MedRxiv. https://doi.org/10.1101/2020.09.08.20190744.

        • Meinzer M.
        • Antonenko D.
        • Lindenberg R.
        • et al.
        Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation.
        J Neurosci. 2012; 32: 1859-1866
        • Meinzer M.
        • Lindenberg R.
        • Sieg M.M.
        • Nachtigall L.
        • Ulm L.
        • Flöel A.
        Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.
        Front Aging Neurosci. 2014; 6: 253
        • Bikson M.
        • Name A.
        • Rahman A.
        Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms.
        Front Hum Neurosci. 2013; 7: 688https://doi.org/10.3389/fnhum.2013.00688
        • Pisoni A.
        • Mattavelli G.
        • Papagno C.
        • Rosanova M.
        • Casali A.G.
        • Romero Lauro L.J.
        Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity.
        Cereb Cortex. 2018; 28: 1132-1140https://doi.org/10.1093/cercor/bhx021
        • Harris A.D.
        • Wang Z.
        • Ficek B.
        • Webster K.
        • Edden R.A.E.
        • Tsapkini K.
        Reductions in GABA following a tDCS-language intervention for primary progressive aphasia.
        Neurobiol Aging. 2019; 79: 75-82https://doi.org/10.1016/j.neurobiolaging.2019.03.011
        • Meinzer M.
        • Lindenberg R.
        • Darkow R.
        • Ulm L.
        • Copland D.
        • Flöel A.
        Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging.
        J Vis Exp. 2014; 86e51730

      Comment