Advertisement

Burst Transspinal Magnetic Stimulation Alleviates Nociceptive Pain in Parkinson Disease—A Pilot Phase II Double-Blind, Randomized Study

Published:November 18, 2022DOI:https://doi.org/10.1016/j.neurom.2022.10.043

      Abstract

      Background and Aims

      Nociception is the most prevalent pain mechanism in Parkinson disease (PD). It negatively affects quality of life, and there is currently no evidence-based treatment for its control. Burst spinal cord stimulation has been used to control neuropathic pain and recently has been shown to relieve pain of nociceptive origin. In this study, we hypothesize that burst transspinal magnetic stimulation (bTsMS) reduces nociceptive pain in PD.

      Materials and Methods

      Twenty-six patients were included in a double-blind, sham-controlled, randomized parallel trial design, and the analgesic effect of lower-cervical bTsMS was assessed in patients with nociceptive pain in PD. Five daily induction sessions were followed by maintenance sessions delivered twice a week for seven weeks. The primary outcome was the number of responders (≥ 50% reduction of average pain intensity assessed on a numerical rating scale ranging from 0–10) during the eight weeks of treatment. Mood, quality of life, global impression of change, and adverse events were assessed throughout the study.

      Results

      Twenty-six patients (46.2% women) were included in the study. The number of responders during treatment was significantly higher after active than after sham bTsMS (p = 0.044), mainly owing to the effect of the first week of treatment, when eight patients (61.5%) responded to active and two (15.4%) responded to sham bTsMS (p = 0.006); the number needed to treat was 2.2 at week 1. Depression symptom scores were lower after active (4.0 ± 3.1) than after sham bTsMS (8.7 ± 5.3) (p = 0.011). Patients’ global impressions of change were improved after active bTsMS (70.0%) compared with sham bTsMS (18.2%; p = 0.030). Minor adverse events were reported in both arms throughout treatment sessions. One major side effect unrelated to treatment occurred in the active arm (death due to pulmonary embolism). Blinding was effective.

      Conclusion

      BTsMS provided significant pain relief and improved the global impression of change in PD in this phase-II trial.

      Clinical Trial Registration

      The Clinicaltrials.gov registration number for the study is NCT04546529.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jost W.H.
        • Reichmann H.
        “An essay on the shaking palsy” 200 years old.
        J Neural Transm (Vienna). 2017; 124: 899-900
        • Antonini A.
        • Albin R.L.
        Dopaminergic treatment and nonmotor features of Parkinson disease: the horse lives.
        Neurology. 2013; 80: 784-785
        • Beiske A.G.
        • Loge J.H.
        • Rønningen A.
        • Svensson E.
        Pain in Parkinson’s disease: prevalence and characteristics.
        Pain. 2009; 141: 173-177
        • Roh J.H.
        • Kim B.J.
        • Jang J.H.
        • et al.
        The relationship of pain and health-related quality of life in Korean patients with Parkinson’s disease.
        Acta Neurol Scand. 2009; 119: 397-403
        • Camacho-Conde J.A.
        • Campos-Arillo V.M.
        The phenomenology of pain in Parkinson’s disease.
        Korean J Pain. 2020; 33: 90-96
        • Fasano A.
        • Daniele A.
        • Albanese A.
        Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation.
        Lancet Neurol. 2012; 11: 429-442
        • Braak H.
        • Braak E.
        • Yilmazer D.
        • Schultz C.
        • de Vos R.A.
        • Jansen E.N.
        Nigral and extranigral pathology in Parkinson’s disease.
        J Neural Transm Suppl. 1995; 46: 15-31
        • Klingelhoefer L.
        • Reichmann H.
        Parkinson’s disease as a multisystem disorder.
        J Neural Transm (Vienna). 2017; 124: 709-713
        • Rukavina K.
        • Leta V.
        • Sportelli C.
        • et al.
        Pain in Parkinson’s disease: new concepts in pathogenesis and treatment.
        Curr Opin Neurol. 2019; 32: 579-588
        • Seppi K.
        • Ray Chaudhuri K.
        • Coelho M.
        • et al.
        Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence-based medicine review.
        Mov Disord. 2019; 34: 180-198
        • Jost W.H.
        • Buhmann C.
        The challenge of pain in the pharmacological management of Parkinson’s disease.
        Expert Opin Pharmacother. 2019; 20: 1847-1854
        • Cury R.G.
        • Galhardoni R.
        • Fonoff E.T.
        • et al.
        Effects of deep brain stimulation on pain and other nonmotor symptoms in Parkinson disease.
        Neurology. 2014; 83: 1403-1409
        • Treede R.D.
        • Rief W.
        • Barke A.
        • et al.
        Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11).
        Pain. 2018; 160: 19-27
        • Sá K.N.
        • Moreira L.
        • Baptista A.F.
        • et al.
        Prevalence of chronic pain in developing countries: systematic review and meta-analysis.
        PAIN Rep. 2019; 4: e779
        • Defazio G.
        • Berardelli A.
        • Fabbrini G.
        • et al.
        Pain as a nonmotor symptom of Parkinson disease: evidence from a case-control study.
        Arch Neurol. 2008; 65: 1191-1194
        • Tinazzi M.
        • Del Vesco C.
        • Fincati E.
        • et al.
        Pain and motor complications in Parkinson’s disease.
        J Neurol Neurosurg Psychiatry. 2006; 77: 822-825
        • Mylius V.
        • Perez Lloret S.
        • Cury R.G.
        • et al.
        The Parkinson disease pain classification system: results from an international mechanism-based classification approach.
        Pain. 2021; 162: 1201-1210
        • Freynhagen R.
        • Parada H.A.
        • Calderon-Ospina C.A.
        • et al.
        Current understanding of the mixed pain concept: a brief narrative review.
        Curr Med Res Opin. 2019; 35: 1011-1018
        • Melzack R.
        • Wall P.D.
        Pain mechanisms: a new theory.
        Science. 1965; 150: 971-979
        • De Andrade D.C.
        • Bendib B.
        • Hattou M.
        • Keravel Y.
        • Nguyen J.P.
        • Lefaucheur J.P.
        Neurophysiological assessment of spinal cord stimulation in failed back surgery syndrome.
        Pain. 2010; 150: 485-491
        • De Ridder D.
        • Vanneste S.
        Burst and tonic spinal cord stimulation: different and common brain mechanisms.
        Neuromodulation. 2016; 19: 47-59
        • Chakravarthy K.
        • Fishman M.A.
        • Zuidema X.
        • Hunter C.W.
        • Levy R.
        Mechanism of action in burst spinal cord stimulation: review and recent advances.
        Pain Med. 2019; 20: S13-S22
        • Kirketeig T.
        • Schultheis C.
        • Zuidema X.
        • Hunter C.W.
        • Deer T.
        Burst spinal cord stimulation: a clinical review.
        Pain Med. 2019; 20: S31-S40
        • Postuma R.B.
        • Berg D.
        • Stern M.
        • et al.
        MDS clinical diagnostic criteria for Parkinson’s disease.
        Mov Disord. 2015; 30: 1591-1601
        • Finnerup N.B.
        • Haroutounian S.
        • Kamerman P.
        • et al.
        Neuropathic pain: an updated grading system for research and clinical practice.
        Pain. 2016; 157: 1599-1606
        • de Andrade D.C.
        • Ferreira K.A.
        • Nishimura C.M.
        • et al.
        Psychometric validation of the Portuguese version of the neuropathic pain symptoms inventory.
        Health Qual Life Outcomes. 2011; 9: 107
        • De Martino E.
        • Fernandes A.M.
        • Galhardoni R.
        • De Oliveira Souza C.
        • Ciampi De Andrade D.
        • Graven-Nielsen T.
        Sessions of prolonged continuous theta burst stimulation or high-frequency 10 Hz stimulation to left dorsolateral prefrontal cortex for 3 days decreased pain sensitivity by modulation of the efficacy of conditioned pain modulation.
        J Pain. 2019; 20: 1459-1469
        • Trenkwalder C.
        • Chaudhuri K.R.
        • Martinez-Martin P.
        • et al.
        Prolonged-release oxycodone-naloxone for treatment of severe pain in patients with Parkinson’s disease (PANDA): a double-blind, randomised, placebo-controlled trial.
        Lancet Neurol. 2015; 14: 1161-1170
        • Botega N.J.
        • Bio M.R.
        • Zomignani M.A.
        • Garcia C.
        • Pereira W.A.
        Mood disorders among inpatients in ambulatory and validation of the anxiety and depression scale HAD. Article in Portuguese.
        Rev Saude Publica. 1995; 29: 355-363
        • Santos M.
        • Cintra M.A.
        • Monteiro A.L.
        • et al.
        Brazilian valuation of EQ-5D-3L health states: results from a Saturation Study.
        Med Decis Making. 2016; 36: 253-263
        • Goetz C.G.
        • Tilley B.C.
        • Shaftman S.R.
        • et al.
        Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results.
        Mov Disord. 2008; 23: 2129-2170
        • Ferreira K.A.
        • Teixeira M.J.
        • Mendonza T.R.
        • Cleeland C.S.
        Validation of brief pain inventory to Brazilian patients with pain.
        Support Care Cancer. 2011; 19: 505-511
        • Lima M.S.
        • Soares B.G.
        • Paoliello G.
        • et al.
        The Portuguese version of the clinical global impression-Schizophrenia Scale: validation study.
        Braz J Psychiatry. 2007; 29: 246-249
        • Rocha Rde O.
        • Teixeira M.J.
        • Yeng L.T.
        • et al.
        Thoracic sympathetic block for the treatment of complex regional pain syndrome type I: a double-blind randomized controlled study.
        Pain. 2014; 155: 2274-2281
        • Dongyang L.
        • Fernandes A.M.
        • da Cunha P.H.M.
        • et al.
        Posterior-superior insular deep transcranial magnetic stimulation alleviates peripheral neuropathic pain—a pilot double-blind, randomized cross-over study.
        Neurophysiol Clin. 2021; 51: 291-302
        • Harrell Jr., F.E.
        Regression Modeling Strategies With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis.
        2nd Ed. Springer, 2015
        • Fitzmaurice G.
        • Laird N.
        • Ware J.
        Applied Longitudinal Analysis.
        2nd ed. Wiley, 2012
        • Twisk J.W.R.
        Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide.
        2nd ed. Cambridge University Press, 2013
        • de Andrade D.C.
        • Lefaucheur J.P.
        • Galhardoni R.
        • et al.
        Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson’s disease.
        Pain. 2012; 153: 1107-1113
        • Slaoui T.
        • Mas-Gerdelat A.
        • Ory-Magne F.
        • Rascol O.
        • Brefel-Courbon C.
        La lévodopa modifie les seuils nociceptifs chez le patient parkinsonien.
        Rev Neurol (Paris). 2007; 163: 66-71
        • Cury R.G.
        • Galhardoni R.
        • Teixeira M.J.
        • et al.
        Subthalamic deep brain stimulation modulates conscious perception of sensory function in Parkinson’s disease.
        Pain. 2016; 157: 2758-2765
        • Kim H.J.
        • Jeon B.S.
        • Lee J.Y.
        • Paek S.H.
        • Kim D.G.
        The benefit of subthalamic deep brain stimulation for pain in Parkinson disease: a 2-year follow-up study.
        Neurosurgery. 2012; 70 ([discussion: 23–4]): 18-23
        • Spielberger S.
        • Wolf E.
        • Kress M.
        • Seppi K.
        • Poewe W.
        The influence of deep brain stimulation on pain perception in Parkinson’s disease.
        Mov Disord. 2011; 26: 1367-1369
        • Li J.
        • Mi T.M.
        • Zhu B.F.
        • et al.
        High-frequency repetitive transcranial magnetic stimulation over the primary motor cortex relieves musculoskeletal pain in patients with Parkinson’s disease: a randomized controlled trial.
        Parkinsonism Relat Disord. 2020; 80: 113-119
        • Djaldetti R.
        • Yust-Katz S.
        • Kolianov V.
        • Melamed E.
        • Dabby R.
        The effect of duloxetine on primary pain symptoms in Parkinson disease.
        Clin Neuropharmacol. 2007; 30: 201-205
        • Iwaki H.
        • Ando R.
        • Tada S.
        • et al.
        A double-blind, randomized controlled trial of duloxetine for pain in Parkinson’s disease.
        J Neurol Sci. 2020; 414116833
        • Chakravarthy K.V.
        • Chaturvedi R.
        • Agari T.
        • Iwamuro H.
        • Reddy R.
        • Matsui A.
        Single arm prospective multicenter case series on the use of burst stimulation to improve pain and motor symptoms in Parkinson’s disease.
        Bioelectron Med. 2020; 6: 18
        • Lee M.A.
        • Walker R.W.
        • Hildreth T.J.
        • Prentice W.M.
        A survey of pain in idiopathic Parkinson’s disease.
        J Pain Symptom Manage. 2006; 32: 462-469
        • Wu M.
        • Linderoth B.
        • Foreman R.D.
        Putative mechanisms behind effects of spinal cord stimulation on vascular diseases.
        Auton Neurosci. 2009; 138: 9-23
        • Squair J.W.
        • Berney M.
        • Castro Jimenez M.
        • et al.
        Implanted system for orthostatic hypotension in multiple-system atrophy.
        N Engl J Med. 2022; 386: 1339-1344
        • Tang R.
        • Martinez M.
        • Goodman-Keiser M.
        • Farber J.P.
        • Qin C.
        • Foreman R.D.
        Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model.
        Neuromodulation. 2014; 17: 143-151
        • Linderoth B.
        • Meyerson B.A.
        Spinal cord stimulation: exploration of the physiological basis of a widely used therapy.
        Anesthesiology. 2010; 113: 1265-1267
        • Guan Y.
        • Wacnik P.W.
        • Yang F.
        • et al.
        Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats.
        Anesthesiology. 2010; 113: 1392-1405
        • Song Z.
        • Ansah O.B.
        • Meyerson B.A.
        • Pertovaara A.
        • Linderoth B.
        The rostroventromedial medulla is engaged in the effects of spinal cord stimulation in a rodent model of neuropathic pain.
        Neuroscience. 2013; 247: 134-144
        • Moens M.
        • Sunaert S.
        • Mariën P.
        • et al.
        Spinal cord stimulation modulates cerebral function: an fMRI study.
        Neuroradiology. 2012; 54: 1399-1407
        • Katz N.
        • Dworkin R.H.
        • North R.
        • et al.
        Research design considerations for randomized controlled trials of spinal cord stimulation for pain: initiative on Methods, Measurement, and Pain Assessment in Clinical Trials/Institute of Neuromodulation/International Neuromodulation Society recommendations.
        Pain. 2021; 162: 1935-1956
        • Lefaucheur J.P.
        • Ayache S.S.
        • Sorel M.
        • et al.
        Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming.
        Eur J Pain. 2012; 16: 1403-1413
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Larson J.
        • Lynch G.
        Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events.
        Science. 1986; 232: 985-988
        • Saudargiene A.
        • Cobb S.
        • Graham B.P.
        A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
        Hippocampus. 2015; 25: 208-218
        • Li C.T.
        • Huang Y.Z.
        • Bai Y.M.
        • Tsai S.J.
        • Su T.P.
        • Cheng C.M.
        Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of theta-burst stimulation.
        Hum Brain Mapp. 2019; 40: 2001-2009
        • Chu H.T.
        • Cheng C.M.
        • Liang C.S.
        • et al.
        Efficacy and tolerability of theta-burst stimulation for major depression: a systematic review and meta-analysis.
        Prog Neuropsychopharmacol Biol Psychiatry. 2021; 106110168
        • Insausti-Delgado A.
        • Lopez-Larraz E.
        • Nishimura Y.
        • Birbaumer N.
        • Ziemann U.
        • Ramos-Murguialday A.
        Influence of trans-spinal magnetic stimulation in electrophysiological recordings for closed-loop rehabilitative systems.
        Annu Int Conf IEEE Eng Med Biol Soc. 2017; 2017: 2518-2521
        • Nakagawa K.
        • Nakazawa K.
        Static magnetic field stimulation applied over the cervical spinal cord can decrease corticospinal excitability in finger muscle.
        Clin Neurophysiol Pract. 2018; 3: 49-53
        • Liu H.
        • Xiong D.
        • Pang R.
        • et al.
        Effects of repetitive magnetic stimulation on motor function and GAP43 and 5-HT expression in rats with spinal cord injury.
        J Int Med Res. 2020; 48300060520970765
        • Cogiamanian F.
        • Vergari M.
        • Pulecchi F.
        • Marceglia S.
        • Priori A.
        Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans.
        Clin Neurophysiol. 2008; 119: 2636-2640
        • Lenoir C.
        • Jankovski A.
        • Mouraux A.
        Anodal transcutaneous spinal direct current stimulation (tsDCS) selectively inhibits the synaptic efficacy of nociceptive transmission at spinal cord level.
        Neuroscience. 2018; 393: 150-163
        • Murray L.M.
        • Knikou M.
        Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans.
        Exp Brain Res. 2019; 237: 1841-1852
        • Murray L.M.
        • Islam M.A.
        • Knikou M.
        Cortical and subcortical contributions to neuroplasticity after repetitive transspinal stimulation in humans.
        Neural Plast. 2019; 20194750768
        • Guidetti M.
        • Ferrucci R.
        • Vergari M.
        • et al.
        Effects of transcutaneous spinal direct current stimulation (tsDCS) in patients with chronic pain: a clinical and neurophysiological study.
        Front Neurol. 2021; 12695910
        • Xiaoyi M.
        • Kent A.R.
        Modeling the impact of spinal cord stimulation paddle lead position on impedance, stimulation threshold, and activation region.
        Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 5801-5804
        • Rossini P.M.
        • Burke D.
        • Chen R.
        • et al.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.
        Clin Neurophysiol. 2015; 126: 1071-1107
        • Saini H.S.
        • Shnoda M.
        • Saini I.
        • Sayre M.
        • Tariq S.
        The effects of spinal cord stimulators on end organ perfusion: a literature review.
        Cureus. 2020; 12e7253
        • Galhardoni R.
        • Aparecida da Silva V.
        • García-Larrea L.
        • et al.
        Insular and anterior cingulate cortex deep stimulation for central neuropathic pain disassembling the percept of pain.
        Neurology. 2019; 92: e2165-e2175
        • Faber J.
        • Fonseca L.M.
        How sample size influences research outcomes.
        Dental Press J Orthod. 2014; 19: 27-29
        • Lefaucheur J.P.
        • Aleman A.
        • Baeken C.
        • et al.
        Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018).
        Clin Neurophysiol. 2020; 131: 474-528
        • Al-Kaisy A.
        • Baranidharan G.
        • Sharon H.
        • et al.
        Comparison of paresthesia mapping With anatomic placement in burst spinal cord stimulation: long-term results of the prospective, multicenter, randomized, double-blind, crossover CRISP study.
        Neuromodulation. 2022; 25: 85-93
        • De Carolis G.
        • Paroli M.
        • Tollapi L.
        • et al.
        Paresthesia-independence: an assessment of technical factors related to 10 kHz paresthesia-free spinal cord stimulation.
        Pain Physician. 2017; 20: 331-341
        • Bannister K.
        • Kucharczyk M.W.
        • Graven-Nielsen T.
        • Porreca F.
        Introducing descending control of nociception: a measure of diffuse noxious inhibitory controls in conscious animals.
        Pain. 2021; 162: 1957-1959

      Comments