Advertisement

Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-timing Dependent Plasticity

  • Julio C. Hernandez-Pavon
    Affiliations
    Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

    Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA

    Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
    Search for articles by this author
  • Nils Schneider-Garces
    Affiliations
    Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA
    Search for articles by this author
  • John Patrick Begnoche
    Affiliations
    Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA
    Search for articles by this author
  • Lee E. Miller
    Affiliations
    Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

    Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

    Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA

    Limb Motor Control Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
    Search for articles by this author
  • Tommi Raij
    Correspondence
    Address correspondence to: Tommi Raij, MD, PhD, Center for Brain Stimulation, Shirley Ryan AbilityLab, 355 E Erie St, Chicago, IL 60611, USA.Current address for Raij: MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St, Charlestown, MA 02129, USA.
    Affiliations
    Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

    Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA

    Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
    Search for articles by this author
Published:November 17, 2022DOI:https://doi.org/10.1016/j.neurom.2022.10.045

      Abstract

      Objective

      The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing–dependent plasticity (STDP).

      Materials and Methods

      Eleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography.

      Results

      Consistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection.

      Conclusion

      The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Katz L.C.
        • Shatz C.J.
        Synaptic activity and the construction of cortical circuits.
        Science. 1996; 274: 1133-1138
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 3003
        • Forkel S.J.
        • Catani M.
        Lesion mapping in acute stroke aphasia and its implications for recovery.
        Neuropsychologia. 2018; 115: 88-100
        • Filley C.M.
        • Fields R.D.
        White matter and cognition: making the connection.
        J Neurophysiol. 2016; 116: 2093-2104
        • Schmahmann J.D.
        • Smith E.E.
        • Eichler F.S.
        • Filley C.M.
        Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates.
        Ann N Y Acad Sci. 2008; 1142: 266-309
        • Sozmen E.G.
        • Hinman J.D.
        • Carmichael S.T.
        Models that matter: white matter stroke models.
        Neurotherapeutics. 2012; 9: 349-358
        • Corbetta M.
        • Ramsey L.
        • Callejas A.
        • et al.
        Common behavioral clusters and subcortical anatomy in stroke.
        Neuron. 2015; 85: 927-941
        • Jackson A.
        • Mavoori J.
        • Fetz E.E.
        Long-term motor cortex plasticity induced by an electronic neural implant.
        Nature. 2006; 444: 56-60
        • Seeman S.C.
        • Mogen B.J.
        • Fetz E.E.
        • Perlmutter S.I.
        Paired stimulation for spike-timing-dependent plasticity in primate sensorimotor cortex.
        J Neurosci. 2017; 37: 1935-1949
        • Rebesco J.M.
        • Stevenson I.H.
        • Körding K.P.
        • Solla S.A.
        • Miller L.E.
        Rewiring neural interactions by micro-stimulation.
        Front Syst Neurosci. 2010; 4: 39
        • Bi G.Q.
        • Poo M.M.
        Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
        J Neurosci. 1998; 18: 10464-10472
        • Magee J.C.
        • Johnston D.
        A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons.
        Science. 1997; 275: 209-213
        • Markram H.
        • Lübke J.
        • Frotscher M.
        • Sakmann B.
        Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.
        Science. 1997; 275: 213-215
        • Jacob V.
        • Brasier D.J.
        • Erchova I.
        • Feldman D.
        • Shulz D.E.
        Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
        J Neurosci. 2007; 27: 1271-1284
        • Rebesco J.M.
        • Miller L.E.
        Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning.
        J Neural Eng. 2011; 8016011
        • Rizzo V.
        • Siebner H.S.
        • Morgante F.
        • Mastroeni C.
        • Girlanda P.
        • Quartarone A.
        Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism.
        Cereb Cortex. 2009; 19: 907-915
        • Koganemaru S.
        • Mima T.
        • Nakatsuka M.
        • Ueki Y.
        • Fukuyama H.
        • Domen K.
        Human motor associative plasticity induced by paired bihemispheric stimulation.
        J Physiol. 2009; 587: 4629-4644
        • Koch G.
        • Ponzo V.
        • Di Lorenzo F.
        • Caltagirone C.
        • Veniero D.
        Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections.
        J Neurosci. 2013; 33: 9725-9733
        • Kohl S.
        • Hannah R.
        • Rocchi L.
        • Nord C.L.
        • Rothwell J.
        • Voon V.
        Cortical paired associative stimulation influences response inhibition: cortico-cortical and cortico-subcortical networks.
        Biol Psychiatry. 2019; 85: 355-363
        • Nord C.L.
        • Popa T.
        • Smith E.
        • et al.
        The effect of frontoparietal paired associative stimulation on decision-making and working memory.
        Cortex. 2019; 117: 266-276
        • Ribolsi M.
        • Lisi G.
        • Ponzo V.
        • et al.
        Left hemispheric breakdown of LTP-like cortico-cortical plasticity in schizophrenic patients.
        Clin Neurophysiol. 2017; 128: 2037-2042
        • Di Lorenzo F.
        • Ponzo V.
        • Motta C.
        • et al.
        Impaired spike timing dependent cortico-cortical plasticity in Alzheimer's disease patients.
        J Alzheimers Dis. 2018; 66: 983-991
        • Koch G.
        Cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications.
        Exp Brain Res. 2020; 238: 1677-1684
        • Zibman S.
        • Zangen A.
        Comments on "cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications" (Koch, Exp Brain Res., 2020).
        Exp Brain Res. 2021; 239: 2357-2358
        • Koch G.
        Response letter to comments on “cortico-cortical connectivity: the road from basic neurophysiological interactions to therapeutic applications” by Zibman and Zangen.
        Exp Brain Res. 2021; 239: 1685-1686
        • Ruddy K.L.
        • Leemans A.
        • Carson R.G.
        Transcallosal connectivity of the human cortical motor network.
        Brain Struct Funct. 2017; 222: 1243-1252
        • Voineskos A.N.
        • Farzan F.
        • Barr M.S.
        • et al.
        The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation.
        Biol Psychiatry. 2010; 68: 825-831
        • Wahl M.
        • Lauterbach-Soon B.
        • Hattingen E.
        • et al.
        Human motor corpus callosum: topography, somatotopy, and link between microstructure and function.
        J Neurosci. 2007; 27: 12132-12138
        • Ferbert A.
        • Priori A.
        • Rothwell J.C.
        • Day B.L.
        • Colebatch J.G.
        • Marsden C.D.
        Interhemispheric inhibition of the human motor cortex.
        J Physiol. 1992; 453: 525-546
        • Ni Z.
        • Leodori G.
        • Vial F.
        • et al.
        Measuring latency distribution of transcallosal fibers using transcranial magnetic stimulation.
        Brain Stimul. 2020; 13: 1453-1460
        • Oldfield R.C.
        The assessment and analysis of handedness: the Edinburgh Inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Rossi S.
        • Hallett M.
        • Rossini P.M.
        • Pascual-Leone A.
        Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research.
        Clin Neurophysiol. 2009; 120: 2008-2039
        • Suppa A.
        • Quartarone A.
        • Siebner H.
        • et al.
        The associative brain at work: evidence from paired associative stimulation studies in humans.
        Clin Neurophysiol. 2017; 128: 2140-2164
        • Gramfort A.
        • Luessi M.
        • Larson E.
        • et al.
        MNE software for processing MEG and EEG data.
        Neuroimage. 2014; 86: 446-460
        • Hämäläinen M.
        • Hari R.
        • Ilmoniemi R.J.
        • Knuutila J.
        • Lounasmaa O.V.
        Magnetoencephalography: theory, instrumentation, and application to noninvasive studies of the working human brain.
        Rev Mod Phys. 1993; 65: 413-497
        • Murakami S.
        • Okada Y.
        Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals.
        J Physiol. 2006; 575: 925-936
        • Reis J.
        • Swayne O.B.
        • Vandermeeren Y.
        • et al.
        Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.
        J Physiol. 2008; 586: 325-351
        • Rossini P.M.
        • Barker A.T.
        • Berardelli A.
        • et al.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee.
        Electroencephalogr Clin Neurophysiol. 1994; 91: 79-92
        • van der Kouwe A.J.W.
        • Benner T.
        • Salat D.H.
        • Fischl B.
        Brain morphometry with multiecho MPRage.
        NeuroImage. 2008; 40: 559-569
        • Wedeen V.J.
        • Hagmann P.
        • Tseng W.Y.
        • Reese T.G.
        • Weisskoff R.M.
        Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging.
        Magn Reson Med. 2005; 54: 1377-1386
        • Setsompop K.
        • Cohen-Adad J.
        • Gagoski B.A.
        • et al.
        Improving diffusion MRI using simultaneous multi-slice echo planar imaging.
        Neuroimage. 2012; 63: 569-580
        • Fischl B.
        FreeSurfer.
        Neuroimage. 2012; 62: 774-781
        • Behrens T.E.
        • Woolrich M.W.
        • Jenkinson M.
        • et al.
        Characterization and propagation of uncertainty in diffusion-weighted MR imaging.
        Magn Reson Med. 2003; 50: 1077-1088
        • Postelnicu G.
        • Zollei L.
        • Fischl B.
        Combined volumetric and surface registration.
        IEEE Trans Med Imaging. 2009; 28: 508-522
        • Zöllei L.
        • Stevens A.
        • Huber K.
        • Kakunoori S.
        • Fischl B.
        Improved tractography alignment using combined volumetric and surface registration.
        Neuroimage. 2010; 51: 206-213
        • Ilmoniemi R.J.
        • Hernandez-Pavon J.C.
        • Makela N.N.
        • et al.
        Dealing with artifacts in TMS-evoked EEG.
        Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015: 230-233
        • Mutanen T.
        • Mäki H.
        • Ilmoniemi R.J.
        The effect of stimulus parameters on TMS-EEG muscle artifacts.
        Brain Stimul. 2013; 6: 371-376
        • Ilmoniemi R.J.
        • Kicić D.
        Methodology for combined TMS and EEG.
        Brain Topogr. 2010; 22: 233-248
        • Hernandez-Pavon J.C.
        • Kugiumtzis D.
        • Zrenner C.
        • Kimiskidis V.K.
        • Metsomaa J.
        Removing artifacts from TMS-evoked EEG: a methods review and a unifying theoretical framework.
        J Neurosci Methods. 2022; 376109591
        • Terao Y.
        • Ugawa Y.
        Basic mechanisms of TMS.
        J Clin Neurophysiol. 2002; 19: 322-343
        • Klem G.H.
        • Lüders H.O.
        • Jasper H.H.
        • Elger C.
        The ten-twenty electrode system of the international federation. The International Federation of Clinical Neurophysiology.
        Electroencephalogr Clin Neurophysiol Suppl. 1999; 52: 3-6
        • Sekiguchi H.
        • Takeuchi S.
        • Kadota H.
        • Kohno Y.
        • Nakajima Y.
        TMS-induced artifacts on EEG can be reduced by rearrangement of the electrode's lead wire before recording.
        Clin Neurophysiol. 2011; 122: 984-990
        • Nummenmaa A.
        • Stenroos M.
        • Ilmoniemi R.J.
        • Okada Y.C.
        • Hämäläinen M.S.
        • Raij T.
        Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation.
        Clin Neurophysiol. 2013; 124: 1995-2007
        • Stenroos M.
        • Mäntynen V.
        • Nenonen J.
        A MATLAB library for solving quasi-static volume conduction problems using the boundary element method.
        Comput Methods Programs Biomed. 2007; 88: 256-263
        • Rogasch N.C.
        • Sullivan C.
        • Thomson R.H.
        • et al.
        Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software.
        NeuroImage. 2017; 147: 934-951
        • Hernandez-Pavon J.C.
        • Metsomaa J.
        • Mutanen T.
        • et al.
        Uncovering neural independent components from highly artifactual TMS-evoked EEG data.
        J Neurosci Methods. 2012; 209: 144-157
        • Korhonen R.J.
        • Hernandez-Pavon J.C.
        • Metsomaa J.
        • Mäki H.
        • Ilmoniemi R.J.
        • Sarvas J.
        Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis.
        Med Biol Eng Comput. 2011; 49: 397-407
        • Bertazzoli G.
        • Esposito R.
        • Mutanen T.P.
        • et al.
        The impact of artifact removal approaches on TMS–EEG signal.
        Neuroimage. 2021; 239118272
        • Dale A.M.
        • Sereno M.I.
        Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach.
        J Cogn Neurosci. 1993; 5: 162-176
        • Dale A.M.
        • Liu A.K.
        • Fischl B.R.
        • et al.
        Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity.
        Neuron. 2000; 26: 55-67
        • Liu A.K.
        • Belliveau J.W.
        • Dale A.M.
        Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoenceohalography data: Monte Carlo simulations.
        Proc Natl Acad Sci U S A. 1998; 95: 8945-8950
        • Lin F.H.
        • Belliveau J.W.
        • Dale A.M.
        • Hämäläinen M.S.
        Distributed current estimates using cortical orientation constraints.
        Hum Brain Mapp. 2006; 27: 1-13
        • Hämäläinen M.S.
        • Ilmoniemi R.J.
        Interpreting magnetic fields of the brain: minimum norm estimates.
        Med Biol Eng Comput. 1994; 32: 35-42
        • Conde V.
        • Tomasevic L.
        • Akopian I.
        • et al.
        The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.
        Neuroimage. 2019; 185: 300-312
        • Chiappini E.
        • Borgomaneri S.
        • Marangon M.
        • Turrini S.
        • Romei V.
        • Avenanti A.
        Driving associative plasticity in premotor-motor connections through a novel paired associative stimulation based on long-latency cortico-cortical interactions.
        Brain Stimul. 2020; 13: 1461-1463
        • Ibrahim J.G.
        • Molenberghs G.
        Missing data methods in longitudinal studies: a review.
        Test (Madr). 2009; 18: 1-43
        • McCulloch C.
        • Searle S.
        • Neuhaus J.
        Generalized, Linear, and Mixed Models.
        2nd ed. Wiley, 2008
        • Kording K.P.
        Bayesian statistics: relevant for the brain?.
        Curr Opin Neurobiol. 2014; 25: 130-133
        • Rouder J.N.
        • Speckman P.L.
        • Sun D.
        • Morey R.D.
        • Iverson G.
        Bayesian t tests for accepting and rejecting the null hypothesis.
        Psychon Bull Rev. 2009; 16: 225-237
        • Caminiti R.
        • Carducci F.
        • Piervincenzi C.
        • et al.
        Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography.
        J Neurosci. 2013; 33: 14501-14511
        • Nunez P.L.
        • Srinivasan R.
        Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease.
        Brain Res. 2014; 1542: 138-166
        • Nunez P.L.
        • Srinivasan R.
        • Fields R.D.
        EEG functional connectivity, axon delays and white matter disease.
        Clin Neurophysiol. 2015; 126: 110-120
        • Stefan K.
        • Kunesch E.
        • Cohen L.G.
        • Benecke R.
        • Classen J.
        Induction of plasticity in the human motor cortex by paired associative stimulation.
        Brain. 2000; 123: 572-584
        • Stefan K.
        • Kunesch E.
        • Benecke R.
        • Cohen L.G.
        • Classen J.
        Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation.
        J Physiol. 2002; 543: 699-708
        • Wolters A.
        • Sandbrink F.
        • Schlottmann A.
        • et al.
        A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex.
        J Neurophysiol. 2003; 89: 2339-2345
        • Ting W.K.
        • Huot-Lavoie M.
        • Ethier C.
        Paired associative stimulation fails to induce plasticity in freely behaving intact rats.
        eNeuro. 2020; 7 (:ENEURO.0396–19.2020)
        • Müller-Dahlhaus J.F.
        • Orekhov Y.
        • Liu Y.
        • Ziemann U.
        Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation.
        Exp Brain Res. 2008; 187: 467-475
        • Minkova L.
        • Peter J.
        • Abdulkadir A.
        • et al.
        Determinants of inter-individual variability in corticomotor excitability induced by paired associative stimulation.
        Front Neurosci. 2019; 13: 841
        • Campana M.
        • Papazova I.
        • Pross B.
        • Hasan A.
        • Strube W.
        Motor-cortex excitability and response variability following paired-associative stimulation: a proof-of-concept study comparing individualized and fixed inter-stimulus intervals.
        Exp Brain Res. 2019; 237: 1727-1734
        • Tarri M.
        • Brihmat N.
        • Gasq D.
        • et al.
        Five-day course of paired associative stimulation fails to improve motor function in stroke patients.
        Ann Phys Rehabil Med. 2018; 61: 78-84
        • Palmer J.A.
        • Wolf S.L.
        • Borich M.R.
        Paired associative stimulation modulates corticomotor excitability in chronic stroke: a preliminary investigation.
        Restor Neurol Neurosci. 2018; 36: 183-194
        • D'Amico J.M.
        • Dongés S.C.
        • Taylor J.L.
        High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
        J Neurophysiol. 2020; 123: 1969-1978
        • Veniero D.
        • Ponzo V.
        • Koch G.
        Paired associative stimulation enforces the communication between interconnected areas.
        J Neurosci. 2013; 33: 13773-13783
        • Casula E.P.
        • Pellicciari M.C.
        • Picazio S.
        • Caltagirone C.
        • Koch G.
        Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.
        Neuroimage. 2016; 143: 204-213
        • Zibman S.
        • Daniel E.
        • Alyagon U.
        • Etkin A.
        • Zangen A.
        Interhemispheric cortico-cortical paired associative stimulation of the prefrontal cortex jointly modulates frontal asymmetry and emotional reactivity.
        Brain Stimul. 2019; 12: 139-147
        • Schoffelen J.M.
        • Gross J.
        Source connectivity analysis with MEG and EEG.
        Hum Brain Mapp. 2009; 30: 1857-1865
        • Ilmoniemi R.J.
        • Virtanen J.
        • Ruohonen J.
        • et al.
        Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity.
        NeuroReport. 1997; 8: 3537-3540
        • Berman S.
        • Filo S.
        • Mezer A.A.
        Modeling conduction delays in the corpus callosum using MRI-measured g-ratio.
        Neuroimage. 2019; 195: 128-139
        • Fox M.D.
        • Halko M.A.
        • Eldaief M.C.
        • Pascual-Leone A.
        Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS).
        Neuroimage. 2012; 62: 2232-2243
        • Beynel L.
        • Powers J.P.
        • Appelbaum L.G.
        Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: a systematic review.
        Neuroimage. 2020; 211116596
        • Castrillon G.
        • Sollmann N.
        • Kurcyus K.
        • Razi A.
        • Krieg S.M.
        • Riedl V.
        The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex.
        Sci Adv. 2020; 6eaay2739
        • Hermiller M.S.
        • VanHaerents S.
        • Raij T.
        • Voss J.L.
        Frequency-specific noninvasive modulation of memory retrieval and its relationship with hippocampal network connectivity.
        Hippocampus. 2019; 29: 595-609
        • Salinas F.S.
        • Franklin C.
        • Narayana S.
        • Szabó C.Á.
        • Fox P.T.
        Repetitive transcranial magnetic stimulation educes frequency-specific causal relationships in the motor network.
        Brain Stimul. 2016; 9: 406-414
        • Johnen V.M.
        • Neubert F.X.
        • Buch E.R.
        • et al.
        Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest.
        Elife. 2015; 4e04585