Abstract
Objectives
Materials and Methods
Results
Significance
Keywords
Introduction
- Armstrong S.A.
- Herr M.J.
- Duke A.R.
- Lu H.
- Jenkins M.W.
- Chiel H.J.
- Jansen E.D.
- Walsh A.J.
- Tolstykh G.P.
- Martens S.
- Ibey B.L.
- Beier H.T.
- Zhu X.
- Lin J.W.
- Sander M.Y.
- Ganguly M.
- Jenkins M.W.
- Jansen E.D.
- Chiel H.J.
- Ganguly M.
- Ford J.B.
- Zhuo J.
- et al.
- Ford J.B.
- Ganguly M.
- Zhuo J.
- et al.
- Zhuo J.
- Ou Z.
- Zhang Y.
- et al.
- Zhu X.
- Lin J.W.
- Sander M.Y.
- Horváth Á.C.
- Borbély S.
- Mihók F.
- Fürjes P.
- Barthó P.
- Fekete Z.
- Fekete Z.
- Horváth Á.C.
- Zátonyi A.
- Wondergem J.
- Haveman J.
- Rusman V.
- Sminia P.
- Van Dijk J.D.P.
- Franssen H.
- Wieneke G.H.
- Wokke J.H.J.
- Constans C.
- Mateo P.
- Tanter M.
- Aubry J.F.
- Prieto M.L.
- Firouzi K.
- Khuri-Yakub B.T.
- Madison D.V.
- Maduke M.
- Ganguly M.
- Jenkins M.W.
- Jansen E.D.
- Chiel H.J.
- Ganguly M.
- Ford J.B.
- Zhuo J.
- et al.
Materials and Methods
Animal Model
- Duke A.R.
- Lu H.
- Jenkins M.W.
- Chiel H.J.
- Jansen E.D.
Electrophysiological Recording
Resistive Heating

Infrared Neural Inhibition
- Ford J.B.
- Ganguly M.
- Zhuo J.
- et al.
Temperature Elevation Measurement

Experimental Protocol
Data Analysis
CAP Recording Preprocessing
- Ford J.B.
- Ganguly M.
- Zhuo J.
- et al.
Quantification of Inhibition Effect

- Kozub J.A.
- Shen J.H.
- Joos K.M.
- Prasad R.
- Hutson M.S.
- Duke A.R.
- Lu H.
- Jenkins M.W.
- Chiel H.J.
- Jansen E.D.
- Cayce J.M.
- Wells J.D.
- Malphrus J.D.
- et al.
where ΔT is the independent variable. The fitting process results in an estimate of the ΔT50 for inhibition, which is the ΔT threshold for a 50% probability of inhibition. It also estimates , which is the SD of ΔT. Probit regression was conducted separately for the fast- and slow-conducting subpopulation during the INI and RH tests, respectively. The ΔT50 parameters of the fitted models were compared to determine the ΔT threshold difference between the two heating methods.
where “NIS of slow” means the normalized inhibition strength of the slow-conducting subpopulation and “NIS of fast” means the normalized inhibition strength of the fast-conducting subpopulation. The inhibition selectivity index was only calculated for CAPs with an inhibition event (as previously defined), across the whole temperature range.
Results
Nerve’s Thermal Exposure was Similar Between INI and RH
Resistive Heating Can Induce a Selective Inhibition Effect Similar to Infrared Neural Inhibition

Heating modality | Subpopulation | ΔT50 | δ | Root mean squared error |
---|---|---|---|---|
IR neural inhibition | Fast | 10.42 [9.79, 11.04] | 0.35 [0.35, 0.35] | 0.150 |
Slow | 7.40 [6.15, 8.64] | 1.14 [0.49, 1.78] | 0.165 | |
Resistive heating | Fast | 13.68 [13.45, 13.91] | 0.35 [0.35, 0.35] | 0.0386 |
Slow | 8.03 [6.23, 9.83] | 1.58 [0.51, 2.64] | 0.081 |

Discussion
Size Selectivity as an Inherent Property of Heat-Induced Neural Block
- Ganguly M.
- Jenkins M.W.
- Jansen E.D.
- Chiel H.J.
- Ganguly M.
- Ford J.B.
- Zhuo J.
- et al.

RH Showed Less Size-Selective Variability Than Did INI Because of Less Spatial Selectivity
- Duke A.R.
- Lu H.
- Jenkins M.W.
- Chiel H.J.
- Jansen E.D.
Resistive Heating for Implantable Neural Interface Design
Thermal Safety
- Duke A.R.
- Lu H.
- Jenkins M.W.
- Chiel H.J.
- Jansen E.D.
- Horváth Á.C.
- Borbély S.
- Mihók F.
- Fürjes P.
- Barthó P.
- Fekete Z.
- Fekete Z.
- Csernai M.
- Kocsis K.
- Horváth Á.C.
- Pongrácz A.
- Barthó P.
Efficiency of the Power Applied at the Neural Interface and Total Electrical Power
- Ford J.B.
- Ganguly M.
- Zhuo J.
- et al.
- Zhao Y.H.
- Zhang Y.F.
- Bai S.L.
- Fekete Z.
- Csernai M.
- Kocsis K.
- Horváth Á.C.
- Pongrácz A.
- Barthó P.
- Csernyus B.
- Szabó Á.
- Fiáth R.
- et al.
- Fekete Z.
- Csernai M.
- Kocsis K.
- Horváth Á.C.
- Pongrácz A.
- Barthó P.
Biocompatibility
- Sohal H.S.
- Clowry G.J.
- Jackson A.
- O’Neill A.
- Baker S.N.
- Nguyen J.K.
- Park D.J.
- Skousen J.L.
- et al.
Conclusions
Acknowledgements
Authorship Statements
Supplementary Data
- Supplemental Materials
References
- Peripheral and spinal mechanisms of nociception.Physiol Rev. 1987; 67: 67-186https://doi.org/10.1152/physrev.1987.67.1.67
- Physiology, nociception.http://www.ncbi.nlm.nih.gov/books/NBK551562/Date accessed: March 7, 2022
- Spinal cord stimulation for treating chronic pain: reviewing preclinical and clinical data on paresthesia-free high-frequency therapy.Neuromodulation. 2018; 21: 10-18https://doi.org/10.1111/ner.12721
- Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial.JAMA. 2014; 312: 915-922https://doi.org/10.1001/jama.2014.10540
- Blood pressure control with selective vagal nerve stimulation and minimal side effects.J Neural Eng. 2014; 11036011
- Electroceutical targeting of the autonomic nervous system.Physiology (Bethesda). 2019; 34: 150-162https://doi.org/10.1152/physiol.00030.2018
- Preferential block of small myelinated sensory and motor fibers by lidocaine: in vivo electrophysiology in the rat sciatic nerve.Anesthesiology. 2001; 95: 1441-1454https://doi.org/10.1097/00000542-200112000-00025
- Lidocaine patch (5%) produces a selective, but incomplete block of Aδ and C fibers.Pain. 2012; 153: 273-280https://doi.org/10.1016/j.pain.2011.08.020
- Opioids in pain management.Lancet. 1999; 353: 2229-2232https://doi.org/10.1016/S0140-6736(99)03528-X
- The opioid crisis: a comprehensive overview.Curr Pain Headache Rep. 2018; 22: 16https://doi.org/10.1007/s11916-018-0670-z
- Direct current electrical conduction block of peripheral nerve.IEEE Trans Neural Syst Rehabil Eng. 2004; 12: 313-324
- Analysis of nerve conduction block induced by direct current.J Comput Neurosci. 2009; 27: 201-210https://doi.org/10.1007/s10827-009-0137-7
- Reversible blocking of nerve conduction by alternating-current excitation.Nature. 1962; 195: 712-713
- Peripheral nerve conduction block by high-frequency alternating currents: a systematic review.IEEE Trans Neural Syst Rehabil Eng. 2018; 26: 1131-1140https://doi.org/10.1109/TNSRE.2018.2833141
- Analysis of models for external stimulation of axons.IEEE Trans Biomed Eng. 1986; 33: 974-977https://doi.org/10.1109/TBME.1986.325670
- High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve.IEEE Trans Neural Syst Rehabil Eng. 2011; 19: 550-557https://doi.org/10.1109/TNSRE.2011.2163082
- Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation.J Neurophysiol. 2015; 113: 3923-3929https://doi.org/10.1152/jn.00529.2014
- Technical aspects of peripheral nerve stimulation: hardware and complications.Prog Neurol Surg. 2011; 24: 189-202https://doi.org/10.1159/000323275
- Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature.Pain Med. 2016; 17: 325-336https://doi.org/10.1093/pm/pnv025
- Selective inhibition of small-diameter axons using infrared light.Sci Rep. 2017; 7: 3275https://doi.org/10.1038/s41598-017-03374-9
- Spatial and temporal variability in response to hybrid electro-optical stimulation.J Neural Eng. 2012; 9036003https://doi.org/10.1088/1741-2560/9/3/036003
- Transient and selective suppression of neural activity with infrared light.Sci Rep. 2013; 3: 2600https://doi.org/10.1038/srep02600
- Infrared inhibition and waveform modulation of action potentials in the crayfish motor axon.Biomed Opt Express. 2019; 10: 6580-6594https://doi.org/10.1364/BOE.10.006580
- Infrared inhibition of embryonic hearts.J Biomed Opt. 2016; 2160505
- Action potential block in neurons by infrared light.Neurophotonics. 2016; 3040501https://doi.org/10.1117/1.NPh.3.4.040501
- Local inhibition of microstimulation-induced neural excitations by near-infrared laser irradiation in mouse cerebral slices in vitro.in: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE Publications, 2017: 255-258
- Inhibition of cortical neural networks using infrared laser.J Biophotonics. 2019; 12e201800403
- Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission.Neurophotonics. 2020; 7045003https://doi.org/10.1117/1.NPh.7.4.045003
- Biophysical mechanisms of transient optical stimulation of peripheral nerve.Biophys J. 2007; 93: 2567-2580
- Optical pacing of the embryonic heart.Nat Photonics. 2010; 4: 623-626https://doi.org/10.1038/nphoton.2010.166
- Infrared light excites cells by changing their electrical capacitance.Nat Commun. 2012; 3: 736
- Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles.J Neural Eng. 2012; 9066006
- Correspondence: revisiting the theoretical cell membrane thermal capacitance response.Nat Commun. 2017; 8: 1431
- A simulation study of the combined thermoelectric extracellular stimulation of the sciatic nerve of the Xenopus laevis: the localized transient heat block.IEEE Trans Biomed Eng. 2012; 59: 1758-1769
- Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study.J Neural Eng. 2019; 16036020https://doi.org/10.1088/1741-2552/ab131b
- Voltage-gated potassium channels are critical for infrared inhibition of action potentials: an experimental study.Neurophotonics. 2019; 6040501https://doi.org/10.1117/1.NPh.6.4.040501
- Identifying the role of block length in neural heat block to reduce temperatures during infrared neural inhibition.Lasers Surg Med. 2020; 52: 259-275https://doi.org/10.1002/lsm.23139
- Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds.J Neural Eng. 2021; 18056016https://doi.org/10.1088/1741-2552/abf00d
- Isotonic ion replacement can lower the threshold for selective infrared neural inhibition.Neurophotonics. 2021; 8015005https://doi.org/10.1117/1.NPh.8.1.015005
- Prolonged post-stimulation response induced by 980-nm infrared neural stimulation in the rat primary motor cortex.Lasers Med Sci. 2020; 35: 365-372https://doi.org/10.1007/s10103-019-02826-0
- Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex.Sci Rep. 2022; 1211434https://doi.org/10.1038/s41598-022-15367-4
- Single-cell photothermal neuromodulation for functional mapping of neural networks.ACS Nano. 2019; 13: 544-551https://doi.org/10.1021/acsnano.8b07277
- Infrared neuromodulation:a neuroengineering perspective.J Neural Eng. 2020; 17051003https://doi.org/10.1088/1741-2552/abb3b2
- Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice.Microsyst Nanoeng. 2020; 6: 44https://doi.org/10.1038/s41378-020-0153-3
- The effect of temperature on the electrical activity of the giant axon of the squid.J Physiol. 1949; 109: 240-249
- Effects of local hyperthermia on the motor function of the rat sciatic nerve.Int J Radiat Biol Relat Stud Phys Chem Med. 1988; 53: 429-438https://doi.org/10.1080/09553008814552561
- Hyperthermia-induced damage to rat sciatic nerve assessed in vivo with functional methods and with electrophysiology.J Neurosci Methods. 1992; 45: 165-174https://doi.org/10.1016/0165-0270(92)90073-M
- Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating.J Neurophysiol. 2016; 115: 1436-1445https://doi.org/10.1152/jn.00954.2015
- Thermal block of mammalian unmyelinated C fibers by local cooling to 15–25°C after a brief heating at 45°C.J Neurophysiol. 2020; 123: 2173-2179https://doi.org/10.1152/jn.00133.2020
- The influence of temperature on conduction block.Muscle Nerve. 1999; 22: 166-173https://doi.org/10.1002/(SICI)1097-4598(199902)22:2<166::AID-MUS4>3.0.CO;2-Q
- Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current.J Comput Neurosci. 2008; 24: 195-206https://doi.org/10.1007/s10827-007-0050-x
- Influence of temperature on pudendal nerve block induced by high frequency biphasic electrical current.J Urol. 2008; 180: 1173-1178https://doi.org/10.1016/j.juro.2008.04.138
Chen J, Zhong Y, Wang J, et al. Temperature effect on nerve conduction block induced by high-frequency (kHz) biphasic stimulation. Neuromodulation. Published online December 18, 2021. doi:10.1016/j.neurom.2021.10.017
- Relationship between temperature and stimulation frequency in conduction block of amphibian myelinated axon.J Comput Neurosci. 2009; 26: 331-338https://doi.org/10.1007/s10827-008-0115-5
- Bio-heat transfer model of deep brain stimulation induced temperature changes.Conf Proc IEEE Eng Med Biol Soc. 2006; 2006: 3580-3583https://doi.org/10.1109/IEMBS.2006.259425
- Temperature increases by kilohertz frequency spinal cord stimulation.Brain Stimul. 2019; 12: 62-72https://doi.org/10.1016/j.brs.2018.10.007
- Bio-heat model of kilohertz-frequency deep brain stimulation increases brain tissue temperature.Neuromodulation. 2020; 23: 489-495https://doi.org/10.1111/ner.13120
- Tissue temperature increases by a 10 kHz spinal cord stimulation system: phantom and bioheat Model.Neuromodulation. 2021; 24: 1327-1335https://doi.org/10.1111/ner.12980
- Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups.Phys Med Biol. 2018; 63025003https://doi.org/10.1088/1361-6560/aaa15c
- Spike frequency–dependent inhibition and excitation of neural activity by high-frequency ultrasound.J Gen Physiol. 2020; 152e202012672https://doi.org/10.1085/jgp.202012672
- Ultrasound does not activate but can inhibit in vivo mammalian nerves across a wide range of parameters.Sci Rep. 2022; 12: 2182https://doi.org/10.1038/s41598-022-05226-7
- Examination of the afferent fiber responsible for the suppression of jaw-opening reflex in heat, cold, and manual acupuncture stimulation in rats.Brain Res. 1996; 740: 201-207https://doi.org/10.1016/S0006-8993(96)00863-3
- Hyperthermia-induced neural alterations impair proprioception and balance.Med Sci Sports Exerc. 2018; 50: 46-53https://doi.org/10.1249/MSS.0000000000001418
- Somatosensory evoked potentials during whole body hyperthermia in humans.Electroencephalogr Clin Neurophysiol. 1981; 52: 157-162https://doi.org/10.1016/0013-4694(81)90163-2
- Unmyelinated Aplysia nerves exhibit a nonmonotonic blocking response to high-frequency stimulation.IEEE Trans Neural Syst Rehabil Eng. 2009; 17: 537-544https://doi.org/10.1109/TNSRE.2009.2029490
- Thermal dose determination in cancer therapy.Int J Radiat Oncol Biol Phys. 1984; 10: 787-800https://doi.org/10.1016/0360-3016(84)90379-1
- Arrhenius relationships from the molecule and cell to the clinic.Int J Hyperthermia. 1994; 10: 457-483https://doi.org/10.3109/02656739409009351
- Behavior patterns of Aplysia californica in its natural environment.Behav Biol. 1974; 12: 317-337https://doi.org/10.1016/S0091-6773(74)91503-X
- Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.J Biomed Opt. 2015; 20105004https://doi.org/10.1117/1.JBO.20.10.105004
- Infrared neural stimulation of human spinal nerve roots in vivo.Neurophotonics. 2015; 2015007https://doi.org/10.1117/1.NPh.2.1.015007
- Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.Lasers Med Sci. 2017; 32: 1163-1172https://doi.org/10.1007/s10103-017-2222-x
- Optical and thermal modeling of an optrode microdevice for infrared neural stimulation.Appl Opt. 2018; 57: 6952-6957https://doi.org/10.1364/AO.57.006952
- Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates.Biomed Opt Express. 2010; 1: 165-175https://doi.org/10.1364/BOE.1.000165
- Accelerating mesh-based Monte Carlo method on modern CPU architectures.Biomed Opt Express. 2012; 3: 3223-3230https://doi.org/10.1364/BOE.3.003223
- Graphics processing unit-accelerated mesh-based Monte Carlo photon transport simulations.J Biomed Opt. 2019; 24: 1-6https://doi.org/10.1117/1.JBO.24.11.115002
- Effects of hyperthermia on the peripheral nervous system: a review.Int J Hyperthermia. 2004; 20: 371-391https://doi.org/10.1080/02656730310001637631
- Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.Int J Hyperthermia. 2003; 19: 267-294https://doi.org/10.1080/0265673031000119006
- Thresholds for thermal damage to normal tissues: an update.Int J Hyperthermia. 2011; 27: 320-343https://doi.org/10.3109/02656736.2010.534527
- Thermal constraints on in vivo optogenetic manipulations.Nat Neurosci. 2019; 22: 1061-1065https://doi.org/10.1038/s41593-019-0422-3
- Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe.J Neural Eng. 2017; 14034001https://doi.org/10.1088/1741-2552/aa60b1
- High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam.Composites Part A: Applied Science and Manufacturing. 2016; 85: 148-155https://doi.org/10.1016/j.compositesa.2016.03.021
- Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength.Compos Sci Technol. 2017; 152: 243-253https://doi.org/10.1016/j.compscitech.2017.09.032
- Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber.Compos Commun. 2020; 17: 141-146https://doi.org/10.1016/j.coco.2019.12.004
- LED optrode with integrated temperature sensing for optogenetics.Micromachines. 2018; 9: 473https://doi.org/10.3390/mi9090473
- A multimodal, implantable sensor array and measurement system to investigate the suppression of focal epileptic seizure using hypothermia.J Neural Eng. 2021; 18https://doi.org/10.1088/1741-2552/ac15e6
- Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex.PLoS One. 2016; 11e0165606https://doi.org/10.1371/journal.pone.0165606
- Mechanically-compliant intracortical implants reduce the neuroinflammatory response.J Neural Eng. 2014; 11056014https://doi.org/10.1088/1741-2560/11/5/056014
- The foreign body reaction: a chronic inflammatory response.J Biomed Mater Res. 1974; 8: 199-211https://doi.org/10.1002/jbm.820080503
- A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response.J Diabetes Sci Technol. 2008; 2: 1003-1015https://doi.org/10.1177/193229680800200610
- Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics.Front Bioeng Biotechnol. 2021; 9622524
Article info
Publication history
Publication stage
In Press Corrected ProofFootnotes
Source(s) of financial support: This research was supported by the National Institutes of Health (NIH) under Grant Numbers 3OT2 OD025307-01S4, R01 HL126747, and R01 NS121372. The first author was supported by the China Scholarship Council. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Conflict of Interest: Michael A. Moffitt is also employed by Boston Scientific and works on pain treatments using another modality. Junqi Zhuo, E. Duco Jansen, Hillel J. Chiel, and Michael W. Jenkins have a patent pending to Case Western Reserve University. The remaining authors reported no conflict of interest.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy