Advertisement
Clinical Research|Articles in Press

Insular Role in Blood Pressure and Systemic Vascular Resistance Regulation

  • Alvaro Sanchez-Larsen
    Correspondence
    Address correspondence to: Alvaro Sanchez-Larsen, MD, Department of Neurology, Hospital del Mar, Passeig Maritim 25, E-08003 Barcelona, Spain.
    Affiliations
    Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain

    Department of Neurology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Search for articles by this author
  • Alessandro Principe
    Affiliations
    Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain

    Hospital del Mar Medical Research Institute, Barcelona, Spain
    Search for articles by this author
  • Miguel Ley
    Affiliations
    Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain

    Epilepsy Monitoring Unit, Neurological Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
    Search for articles by this author
  • Beatriz Vaquerizo
    Affiliations
    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain

    Department of Cardiology, Hospital del Mar, Barcelona, Spain
    Search for articles by this author
  • Klaus Langohr
    Affiliations
    Integrative Pharmacology and Systems Neuroscience Group, Hospital del Mar Medical Research Institute, Barcelona, Spain

    Department of Statistics and Operations Research, Universitat Politècnica de Catalunya–BarcelonaTech, Barcelona, Spain
    Search for articles by this author
  • Rodrigo Rocamora
    Affiliations
    Epilepsy Monitoring Unit, Department of Neurology, Member of ERN EpiCARE, Hospital del Mar, Barcelona, Spain

    Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain

    Hospital del Mar Medical Research Institute, Barcelona, Spain
    Search for articles by this author
Published:January 20, 2023DOI:https://doi.org/10.1016/j.neurom.2022.12.012

      Abstract

      Objectives

      The insula is a brain area involved in the modulation of autonomic responses. Previous studies have focused mainly on its heart rate regulatory function, but its role in vascular control is not well defined. Ictal/postictal blood pressure (BP) fluctuations may have a role in the pathogenesis of sudden unexpected death in epilepsy. This study aims to characterize the insular influence on vascular regulation through direct high-frequency electrical stimulation (E-stim) of different insular regions during stereo-electroencephalographic studies.

      Materials and Methods

      An observational, prospective study was conducted, involving people with epilepsy who underwent E-stim of depth electrodes implanted in the insular cortex. Patients with anatomical or electrophysiological insular abnormalities, E-stim producing after discharges, or any elicited symptoms were excluded. Variations of BP and systemic vascular resistance (SVR) during the insular stimuli were analyzed, comparing them with those observed during E-stim of control contacts implanted in cortical noneloquent regions and sham stimulations.

      Results

      Fourteen patients were included, five implanted in the right insula and nine in the left. We analyzed 14 stimulations in the right insula, 18 in the left insula, 18 in control electrodes, and 13 sham stimulations. Most right insular responses were hypertensive, whereas most left ones were hypotensive. E-stim of the right insula produced a significant BP and SVR increase, whereas the left insula induced a significant BP decrease without SVR changes. The most remarkable changes were elicited in both posterior insulas, although the magnitude of BP changes was generally low. Control and sham stimulations did not induce BP or SVR changes.

      Conclusion

      Our findings on insular stimulation suggest an interhemispheric difference in its vascular regulatory function, with a vasopressor effect of the right insula and a vasodilator effect of the left one.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benarroch E.E.
        The central autonomic network: functional organization, dysfunction, and perspective.
        Mayo Clin Proc. 1993; 68: 988-1001https://doi.org/10.1016/s0025-6196(12)62272-1
        • Oppenheimer S.M.
        • Gelb A.
        • Girvin J.P.
        • Hachinski V.C.
        Cardiovascular effects of human insular cortex stimulation.
        Neurology. 1992; 42: 1727-1732
        • Thornton J.M.
        • Aziz T.
        • Schlugman D.
        • Paterson D.J.
        Electrical stimulation of the midbrain increases heart rate and arterial blood pressure in awake humans.
        J Physiol. 2002; 539: 615-621
        • Leung H.
        • Schindler K.
        • Kwan P.
        • Elger C.
        Asystole induced by electrical stimulation of the left cingulate gyrus.
        Epileptic Disord. 2007; 9: 77-81
        • Al-Otaibi F.
        • Wong S.W.
        • Shoemaker J.K.
        • Parrent A.G.
        • Mirsattari S.M.
        The cardioinhibitory responses of the right posterior insular cortex in an epileptic patient.
        Stereotact Funct Neurosurg. 2010; 88: 390-397
        • Chouchou F.
        • Mauguière F.
        • Vallayer O.
        • et al.
        How the insula speaks to the heart: cardiac responses to insular stimulation in humans.
        Hum Brain Mapp. 2019; 40: 2611-2622
        • Inman C.S.
        • Bijanki K.R.
        • Bass D.I.
        • Gross R.E.
        • Hamann S.
        • Willie J.T.
        Human amygdala stimulation effects on emotion physiology and emotional experience.
        Neuropsychologia. 2020; 145106722
        • Sanchez-Larsen A.
        • Principe A.
        • Ley M.
        • Navarro-Cuartero J.
        • Rocamora R.
        Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula.
        Ann Neurol. 2021; 89: 1172-1180https://doi.org/10.1002/ana.26074
        • Nass R.D.
        • Hampel K.G.
        • Elger C.E.
        • Surges R.
        Blood pressure in seizures and epilepsy.
        Front Neurol. 2019; 10: 501https://doi.org/10.3389/fneur.2019.00501
        • Chapman W.P.
        • Livingston R.B.
        • Livingston K.E.
        Frontal lobotomy and electrical stimulation of orbital surface of frontal lobes; effect on respiration and on blood pressure in man.
        Arch Neurol Psychiatry. 1949; 62: 701-716https://doi.org/10.1001/archneurpsyc.1949.02310180002001
        • Livingston R.B.
        • Chapman W.P.
        • Livingston K.E.
        Stimulation of orbital surface of man prior to frontal lobotomy.
        Res Publ Assoc Res Nerv Ment Dis. 1948; 27: 421-432
        • Pool J.L.
        • Ransohoff J.
        Autonomic effects on stimulating rostral portion of cingulate gyri in man.
        J Neurophysiol. 1949; 12: 385-392https://doi.org/10.1152/jn.1949.12.6.385
        • Chapman W.P.
        • Livingston K.E.
        • Poppen J.L.
        Effect upon blood pressure of electrical stimulation of tips of temporal lobes in man.
        J Neurophysiol. 1950; 13: 65-71https://doi.org/10.1152/jn.1950.13.1.65
        • Sauleau P.
        • Raoul S.
        • Lallement F.
        • et al.
        Motor and non motor effects during intraoperative subthalamic stimulation for Parkinson’s disease.
        J Neurol. 2005; 252: 457-464https://doi.org/10.1007/s00415-005-0675-5
        • Lacuey N.
        • Hampson J.P.
        • Theeranaew W.
        • et al.
        Cortical structures associated with human blood pressure control.
        JAMA Neurol. 2018; 75: 194-202https://doi.org/10.1001/jamaneurol.2017.3344
        • Green A.L.
        • Wang S.
        • Owen S.L.
        • et al.
        Deep brain stimulation can regulate arterial blood pressure in awake humans.
        Neuroreport. 2005; 16: 1741-1745https://doi.org/10.1097/01.wnr.0000183904.15773.47
        • Green A.L.
        • Hyam J.A.
        • Williams C.
        • et al.
        Intra-operative deep brain stimulation of the periaqueductal grey matter modulates blood pressure and heart rate variability in humans.
        Neuromodulation. 2010; 13: 174-181
        • Carter H.H.
        • Dawson E.A.
        • Cable N.T.
        • et al.
        Deep brain stimulation of the periaqueductal grey induces vasodilation in humans.
        Hypertension. 2011; 57: e24-e25
        • Szczurkowska P.J.
        • Polonis K.
        • Becari C.
        • Hoffmann M.
        • Narkiewicz K.
        • Chrostowska M.
        Epilepsy and hypertension: the possible link for sudden unexpected death in epilepsy?.
        Cardiol J. 2021; 28: 330-335https://doi.org/10.5603/CJ.a2019.0095
        • Wilner A.N.
        • Sharma B.K.
        • Soucy A.
        • Thompson A.
        • Krueger A.
        Common comorbidities in women and men with epilepsy and the relationship between number of comorbidities and health plan paid costs in 2010.
        Epilepsy Behav. 2014; 32: 15-20https://doi.org/10.1016/j.yebeh.2013.12.032
        • Hampel K.G.
        • Jahanbekam A.
        • Elger C.E.
        • Surges R.
        Seizure-related modulation of systemic arterial blood pressure in focal epilepsy.
        Epilepsia. 2016; 57: 1709-1718https://doi.org/10.1111/epi.13504
        • Nei M.
        • Mintzer S.
        • Skidmore C.
        • Sperling M.R.
        • Ho R.T.
        Heart rate and blood pressure in sudden unexpected death in epilepsy (SUDEP).
        Epilepsy Res. 2016; 122: 44-46https://doi.org/10.1016/j.eplepsyres.2016.02.008
        • Scorza F.A.
        • Almeida A.C.G.
        • Scorza C.A.
        • Finsterer J.
        Sudden death in a patient with epilepsy and arterial hypertension: time for re-assessment.
        Clinics (Sao Paulo). 2021; 76e3023https://doi.org/10.6061/clinics/2021/e3023
        • Oppenheimer S.
        • Cechetto D.
        The insular cortex and the regulation of cardiac.
        function. Compr Physiol. 2016; 6: 1081-1133https://doi.org/10.1002/cphy.c140076
        • Lüders H.O.
        • Schuele S.U.
        • McIntyre C.
        General principles of cortical mapping by electrical stimulation.
        in: Textbook of Epilepsy Surgery. Informa, 2008: 963-977
        • Ilies C.
        • Grudev G.
        • Hedderich J.
        • et al.
        Comparison of a continuous noninvasive arterial pressure device with invasive measurements in cardiovascular postsurgical intensive care patients: a prospective observational study.
        Eur J Anaesthesiol. 2015; 32: 20-28https://doi.org/10.1097/EJA.0000000000000136
        • Fortin J.
        • Habenbacher W.
        • Heller A.
        • et al.
        Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement.
        Comput Biol Med. 2006; 36: 1185-1203
        • Sheng Y.
        • Zhu L.
        The crosstalk between autonomic nervous system and blood vessels.
        Int J Physiol Pathophysiol Pharmacol. 2018; 10: 17-28
        • Pugnaghi M.
        • Meletti S.
        • Castana L.
        • et al.
        Features of somatosensory manifestations induced by intracranial electrical stimulations of the human insula.
        Clin Neurophysiol. 2011; 122: 2049-2058https://doi.org/10.1016/j.clinph.2011.03.013
        • Montavont A.
        • Mauguière F.
        • Mazzola L.
        • et al.
        On the origin of painful somatosensory seizures.
        Neurology. 2015; 84: 594-601https://doi.org/10.1212/WNL.0000000000001235
        • Jones P.P.
        • Shapiro L.F.
        • Keisling G.A.
        • et al.
        Altered autonomic support of arterial blood pressure with age in healthy men.
        Circulation. 2001; 104: 2424-2429
        • Elghozi J.L.
        Short-term variability of blood pressure: physiology and pharmacology.
        Ann Pharm Fr. 2008; 66: 158-168
        • Ponchon P.
        • Elghozi J.L.
        Contribution of the renin-angiotensin and kallikrein-kinin systems to short-term variability of blood pressure in two-kidney, one-clip hypertensive rats.
        Eur J Pharmacol. 1996; 297: 61-70
        • Carnevale D.
        • Lembo G.
        Heart, spleen, brain.
        Circulation. 2018; 138: 1917-1919
        • Robles-Cabrera A.
        • Michel-Chávez A.
        • Callejas-Rojas R.C.
        • Malamud-Kessler C.
        • Delgado G.
        • Estañol-Vidal B.
        The cardiovagal, cardiosympathetic and vasosympathetic arterial baroreflexes and the neural control of short-term blood pressure.
        Rev Neurol. 2014; 59: 508-516
        • van der Lende M.
        • Surges R.
        • Sander J.W.
        • Thijs R.D.
        Cardiac arrhythmias during or after epileptic seizures.
        J Neurol Neurosurg Psychiatry. 2016; 87: 69-74
        • Magnaes B.
        • Nornes H.
        Circulatory and respiratory changes in spontaneous epileptic seizures in man.
        Eur Neurol. 1974; 12: 104-115https://doi.org/10.1159/000114609
        • Bozorgi A.
        • Chung S.
        • Kaffashi F.
        • et al.
        Significant postictal hypotension: expanding the spectrum of seizure-induced autonomic dysregulation.
        Epilepsia. 2013; 54: e127-e130https://doi.org/10.1111/epi.12251
        • Tchekalarova J.D.
        • Ivanova N.
        • Atanasova D.
        • et al.
        Long-term treatment with losartan attenuates seizure activity and neuronal damage without affecting behavioral changes in a model of co-morbid hypertension and epilepsy.
        Cell Mol Neurobiol. 2016; 36: 927-941
        • Sun H.
        • Wu H.
        • Yu X.
        • et al.
        Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus.
        Mol Cell Neurosci. 2015; 65: 58-67
        • Gasparini S.
        • Ferlazzo E.
        • Sueri C.
        • et al.
        Hypertension, seizures, and epilepsy: a review on pathophysiology and management.
        Neurol Sci. 2019; 40: 1775-1783https://doi.org/10.1007/s10072-019-03913-4
        • Fialho G.L.
        • Wolf P.
        • Walz R.
        • Lin K.
        Epilepsy and ultra-structural heart changes: the role of catecholaminergic toxicity and myocardial fibrosis. What can we learn from cardiology?.
        Seizure. 2019; 71: 105-109
        • Samuels M.A.
        The brain-heart connection.
        Circulation. 2007; 116: 77-84
        • Nass R.D.
        • Motloch L.J.
        • Paar V.
        • et al.
        Blood markers of cardiac stress after generalized convulsive seizures.
        Epilepsia. 2019; 60: 201-210https://doi.org/10.1111/epi.14637
        • Dütsch M.
        • Hilz M.J.
        • Devinsky O.
        Impaired baroreflex function in temporal lobe epilepsy.
        J Neurol. 2006; 253: 1300-1308
        • Patel N.K.
        • Javed S.
        • Khan S.
        • et al.
        Deep brain stimulation relieves refractory hypertension.
        Neurology. 2011; 76: 405-407
        • Hyam J.A.
        • Kringelbach M.L.
        • Silburn P.A.
        • Aziz T.Z.
        • Green A.L.
        The autonomic effects of deep brain stimulation--a therapeutic opportunity.
        Nat Rev Neurol. 2012; 8: 391-400
        • Ben Salem D.
        • Walker P.M.
        • Bejot Y.
        • et al.
        N-acetylaspartate/creatine and choline/creatine ratios in the thalami, insular cortex and white matter as markers of hypertension and cognitive impairment in the elderly.
        Hypertens Res. 2008; 31: 1851-1857
        • Nagai M.
        • Hoshide S.
        • Ishikawa J.
        • Shimada K.
        • Kario K.
        Insular cortex atrophy as an independent determinant of disrupted diurnal rhythm of ambulatory blood pressure in elderly hypertension.
        Am J Hypertens. 2009; 22: 723-729
        • McIntosh R.C.
        • Lobo J.D.
        • Yang A.
        • Schneiderman N.
        Brainstem network connectivity with mid-anterior insula predicts lower systolic blood pressure at rest in older adults with hypertension.
        J Hum Hypertens. 2021; 35: 1098-1108https://doi.org/10.1038/s41371-020-00476-2
      1. Sharma M, Kumar A, Sinha DK, Talwar R. Refractory hypotension in post-operative setting with raised intracranial pressure: insula at play? Br J Neurosurg. Published online February 27, 2021. https://doi.org/10.1080/02688697.2021.1888871

        • Meyer S.
        • Strittmatter M.
        • Fischer C.
        • Georg T.
        • Schmitz B.
        Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex.
        NeuroReport. 2004; 15: 357-361
        • Marins F.R.
        • Iddings J.A.
        • Fontes M.A.
        • Filosa J.A.
        Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation.
        Physiol Rep. 2017; 5e13156
        • Ryvlin P.
        • Nashef L.
        • Lhatoo S.D.
        • et al.
        Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study.
        Lancet Neurol. 2013; 12: 966-977https://doi.org/10.1016/S1474-4422(13)70214-X
        • Sanchez-Larsen A.
        • Fernandez-Perez I.
        • Principe A.
        • Ley M.
        • Rocamora R.
        SUDEP in Spain: an epilepsy Monitoring Unit based case series.
        Seizure. 2019; 69: 258-264https://doi.org/10.1016/j.seizure.2019.05.014
        • Poh M.Z.
        • Loddenkemper T.
        • Reinsberger C.
        • et al.
        Autonomic changes with seizures correlate with postictal EEG suppression.
        Neurology. 2012; 78: 1868-1876https://doi.org/10.1212/WNL.0b013e318258f7f1
        • Sanchez-Larsen A.
        • Aznar-Lain G.
        • Benito B.
        • et al.
        Post-ictal atrial fibrillation detected during video-EEG monitoring: case report, proposed physiopathologic mechanism and therapeutic considerations.
        Epilepsy Behav Case Rep. 2017; 8: 40-43https://doi.org/10.1016/j.ebcr.2017.06.005
        • Rajakulendran S.
        • Nashef L.
        Postictal generalized EEG suppression and SUDEP: a review.
        J Clin Neurophysiol. 2015; 32: 14-20https://doi.org/10.1097/WNP.0000000000000147

      Comment