Abstract
Background
Objective/Hypothesis
Materials and Methods
Results
Conclusions
Keywords
Introduction
- Senkowski D.
- Sobirey R.
- Haslacher D.
- Soekadar S.R.
- Antonenko D.
- Faxel M.
- Grittner U.
- Lavidor M.
- Floël A.
- Ruhnau P.
- Neuling T.
- Fuscá M.
- Herrmann C.S.
- Demarchi G.
- Weisz N.
- Ruhnau P.
- Neuling T.
- Fuscá M.
- Herrmann C.S.
- Demarchi G.
- Weisz N.
- Nakazono H.
- Ogata K.
- Kuroda T.
- Tobimatsu S.
Materials And Methods
- Moher D.
- Liberati A.
- Tetzlaff J.
- Altman D.G.
Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement.
Literature Search Strategy

Eligibility: Inclusion/Exclusion
Literature Data Extraction
Author, year | Study design | Session number | Duration (min) | Stimulation frequency | Electrode location (anode, cathode[s]) | Electrode size | Concurrent task | Task | Task domain | Measure | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
Meiron and Lavidor, 48 2014 | Between-subject | 1 | 20 | 4.5 Hz; theta | Bilateral DLPFC (F3/F4) | 4 × 4 cm | Online | N-Back | Verbal | Accuracy, RT | WM accuracy significantly improved |
Jaušovec and Jaušovec, 40 2014 | Within-subject | 2 | 15 | personalized; theta | Left parietal (P3), right eyebrow | 5 × 7 cm; 10 × 7 cm | Offline | Visual array comparison task | Spatial | Accuracy, RT | WM storage capacity significantly improved |
Jaušovec et al, 49 2014 | Within-subject | 2 | 15 | personalized; theta | Left parietal (P3), right eyebrow | 5 × 7 cm | Offline | Corsi block tapping task (FW/BW); Digit span (FW/BW) | Verbal-spatial | Accuracy | WM storage capacity significantly improved |
Hoy et al, 31 2015 | Within-subject | 1 | 20 | 40 Hz; gamma | Left frontal (F3), right supraorbital area | 5 × 7 cm | Offline | N-Back | Verbal | Accuracy | Larger performance improvement in active vs sham, not statistically significant |
Borghini et al, 50 2018 | Within-subject | 4 | 20 | 10 Hz; alpha | Bilateral parietal (P3/P4) | 5 × 7 cm | Online | Retro-cue WM paradigm | Spatial | Accuracy | WM recall accuracy significantly improved |
Jones et al, 51 2019
Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 2019; 1720146324https://doi.org/10.1016/j.brainres.2019.146324 | Within-subject | 1 | 15 | 4.5 Hz; theta | Right DLPFC (F4), right parietal (P4) | 5 × 5 cm | Offline | N-Back | Object | Accuracy | Object WM significantly improved |
Bender et al, 52 2019 | Within-subject | 2 | 12 | 4 Hz; theta | Right parietal (P4); Oz, Cz, and T8 | 19.6 cm2; 4.9 cm2 return | Online | Delayed match-to-sample | Visuo-spatial | Accuracy | WM storage capacity significantly improved |
Reinhart and Nguyen, 32 2019 | Within-subject | 1 | 25 | personalized; theta | Left frontal (F3), left temporal (T3) | 12 mm diameter, Ag/AgCl | Online | Change detection task | Object | Accuracy, RT | WM accuracy significantly improved |
Biel et al, 53 2022 | Between-subject | 1 | 14 | 6 Hz; theta | Left frontal (F3), left parietal (P3); Cz, focal | 2.5 cm diameter | Online | Delayed Letter Recognition Task | Verbal | Accuracy, RT | Performance in demanding task significantly improved |
Thompson et al, 54 2021 | Within-subject | 1 | 20 | 35 Hz; gamma | Bilateral parietal (P3/P4) | 5 × 7 cm | Online | Retro-cue WM paradigm | Visuo-spatial | Accuracy | WM recall accuracy significantly improved |
Author, y | Sample size | Age (y) | Percent female | Education (mean year) |
---|---|---|---|---|
Meiron and Lavidor, 48 2014 | 24 | 21.5 | 100 | 12.67 Active; 12.43 Sham |
Jaušovec and Jaušovec, 40 2014 | 12 | 20.6 | 66.6 | – |
Jaušovec et al, 49 2014 | 12 | 20.5 | 75 | – |
Hoy et al, 31 2015 | 18 | 29.3 | 50 | 16.23 |
Borghini et al, 50 2018 | 25 | 69.1 | 44 | 16.2 |
Jones et al, 51 2019
Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 2019; 1720146324https://doi.org/10.1016/j.brainres.2019.146324 | 38 | 24.5 | 66 | – |
Bender et al, 52 2019 | 14 | 21.9 | 85 | – |
Reinhart and Nguyen, 32 2019 | 42 | 68.8 | 52 | 17 |
Biel et al, 53 2022 | 24 | 21.3 | 58.3 | – |
Thompson et al, 54 2021 | 51 | 24.1 | 58.8 | – |
Data Analyses
- Jones K.T.
- Arciniega H.
- Berryhill M.E.
Results
- Jones K.T.
- Arciniega H.
- Berryhill M.E.
Effects Across all tACS Studies and WM Tasks

Moderator Analyses
Effect of Cognitive Load: N-Back Task
Task Domains: Verbal, Spatial, and Object
Task Accuracy vs Reaction Time
Number of tACS Sessions
Target Region of Stimulation
Nonsignificant Moderator Variables
Meta-Regression for Continuous Variables
Publication Bias

Discussion
- Zimmerman M.
- Aktürk T.
- de Graaf T.A.
- Güntekin B.
- Hanoğlu L.
- Sack A.T.
- Aktürk T.
- de Graaf T.A.
- Erdal F.
- Sack A.T.
- Güntekin B.
- Živanović M.
- Bjekić J.
- Konstantinović U.
- Filipović S.R.
Conclusions
Authorship Statements
References
- Working memory.Curr Biol. 2010; 20: R136-R140https://doi.org/10.1016/j.cub.2009.12.014
- Improving fluid intelligence with training on working memory.Proc Natl Acad Sci U S A. 2008; 105: 6829-6833https://doi.org/10.1073/pnas.0801268105
- Improving fluid intelligence with training on working memory: a meta-analysis.Psychon Bull Rev. 2015; 22: 366-377https://doi.org/10.3758/s13423-014-0699-x
- Decline in cognitive and functional skills increases mortality risk in nondemented elderly.Neurology. 2005; 65: 1218-1226https://doi.org/10.1212/01.wnl.0000180970.07386.cb
- Relationship between activities of daily living and cognitive ability in a sample of older adults with heterogeneous educational level.Ann Indian Acad Neurol. 2014; 17: 71-76https://doi.org/10.4103/0972-2327.128558
- Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults.Front Aging Neurosci. 2019; 11: 340https://doi.org/10.3389/fnagi.2019.00340
- Effects of in-scanner bilateral frontal tDCS on functional connectivity of the working memory network in older adults.Front Aging Neurosci. 2019; 11: 51https://doi.org/10.3389/fnagi.2019.00051
- Modulating behavioral inhibition by tDCS combined with cognitive training.Exp Brain Res. 2012; 219: 363-368https://doi.org/10.1007/s00221-012-3098-4
- Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults.NeuroReport. 2014; 25: 122-126https://doi.org/10.1097/WNR.0000000000000080
- Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes.J Neurosci. 2013; 33: 12470-12478https://doi.org/10.1523/JNEUROSCI.5743-12.2013
- Effects of modulating gamma oscillations via 40Hz transcranial alternating current stimulation (tACS) on Tau PET imaging in mild to moderate Alzheimer’s Disease.J Nucl Med. 2020; 61: 340
- Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study.Brain Stimul. 2021; 14: 531-540https://doi.org/10.1016/j.brs.2021.03.007
- Boosting working memory: uncovering the differential effects of tDCS and tACS.Cereb Cortex Commun. 2022; 3tgac018https://doi.org/10.1093/texcom/tgac018
- Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults.Neural Plast. 2016; 20164274127https://doi.org/10.1155/2016/4274127
- Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry.Eur Arch Psychiatry Clin Neurosci. 2021; 271: 135-156https://doi.org/10.1007/s00406-020-01209-9
- Transcranial alternating current stimulation (tACS).Front Hum Neurosci. 2013; 7: 317https://doi.org/10.3389/fnhum.2013.00317
- Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories.Brain Stimul. 2020; 13: 474-483https://doi.org/10.1016/j.brs.2019.12.019
- Modeling-informed tACS allows shaping oscillatory activity in specific brain networks.Brain Stimul. 2017; 10: 387https://doi.org/10.1016/j.brs.2017.01.144
- Transcranial alternating current stimulation. entrainment and function control of neuronal networks.Nervenarzt. 2015; 86 (Article in German): 1516-1522https://doi.org/10.1007/s00115-015-4317-6
- Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations.Front Hum Neurosci. 2018; 12: 211https://doi.org/10.3389/fnhum.2018.00211
- Endogenous electric fields may guide neocortical network activity.Neuron. 2010; 67: 129-143https://doi.org/10.1016/j.neuron.2010.06.005
- The modulation of cognitive performance with transcranial alternating current stimulation: a systematic review of frequency-specific effects.Brain Sci. 2020; 10: 1-33https://doi.org/10.3390/brainsci10120932
- Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner.Sci Rep. 2016; 627138https://doi.org/10.1038/srep27138
- Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS.Neuroimage. 2017; 147: 960-963https://doi.org/10.1016/j.neuroimage.2016.11.022
- State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.J Neurosci. 2013; 33: 17483-17489https://doi.org/10.1523/JNEUROSCI.1414-13.2013
- Phase and frequency-dependent effects of transcranial alternating current stimulation on motor cortical excitability.PLoS One. 2016; 11e0162521https://doi.org/10.1371/journal.pone.0162521
- The effects of theta and gamma tacs on working memory and electrophysiology.Front Hum Neurosci. 2018; 11: 651https://doi.org/10.3389/fnhum.2017.00651
- Principle and mechanisms of transcranial direct current stimulation (tDCS).J Pain Manag. 2009; 2: 249-258
- Transcranial alternating current stimulation (tACS) mechanisms and protocols.Front Cell Neurosci. 2017; 11: 214https://doi.org/10.3389/fncel.2017.00214
- Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information?.Trends Cogn Sci. 2014; 18: 16-25https://doi.org/10.1016/j.tics.2013.10.010
- The effect of γ-tACS on working memory performance in healthy controls.Brain Cogn. 2015; 101: 51-56https://doi.org/10.1016/j.bandc.2015.11.002
- Working memory revived in older adults by synchronizing rhythmic brain circuits.Nat Neurosci. 2019; 22: 820-827https://doi.org/10.1038/s41593-019-0371-x
- The θ-γ neural code.Neuron. 2013; 77: 1002-1016https://doi.org/10.1016/j.neuron.2013.03.007
- Brain oscillatory substrates of visual short-term memory capacity.Curr Biol. 2009; 19: 1846-1852https://doi.org/10.1016/j.cub.2009.08.062
- Cross-frequency coupling supports multi-item working memory in the human hippocampus.Proc Natl Acad Sci U S A. 2010; 107: 3228-3233https://doi.org/10.1073/pnas.0911531107
- The role of phase synchronization in memory processes.Nat Rev Neurosci. 2011; 12: 105-118https://doi.org/10.1038/nrn2979
- Control mechanisms in working memory: a possible function of EEG theta oscillations.Neurosci Biobehav Rev. 2010; 34: 1015-1022https://doi.org/10.1016/j.neubiorev.2009.12.006
- Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex.Curr Biol. 2016; 26: 1513-1521https://doi.org/10.1016/j.cub.2016.04.035
- Intrahemispheric theta rhythm desynchronization impairs working memory.Restor Neurol Neurosci. 2017; 35: 147-158https://doi.org/10.3233/RNN-160714
- Increasing working memory capacity with theta transcranial alternating current stimulation (tACS).Biol Psychol. 2014; 96: 42-47https://doi.org/10.1016/j.biopsycho.2013.11.006
- Effects of transcranial alternating current stimulation on visual cognition: a systematic review and meta-analysis.Journal of Vision. 2020; 20: 541
- Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.Front Hum Neurosci. 2015; 9: 257https://doi.org/10.3389/fnhum.2015.00257
- Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory.Cereb Cortex. 2015; 25: 3788-3801https://doi.org/10.1093/cercor/bhu263
- Gamma oscillations correlate with working memory load in humans.Cereb Cortex. 2003; 13: 1369-1374https://doi.org/10.1093/cercor/bhg084
- Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF.Clin Neurophysiol. 2020; 131: 2691-2699https://doi.org/10.1016/j.clinph.2020.08.017
- Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement.PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
- The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.Journal of Clinical Epidemiology. 2021; 134: 178-189https://doi.org/10.1016/j.jclinepi.2021.03.001
- Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary.Clin Neurophysiol. 2014; 125: 77-82https://doi.org/10.1016/j.clinph.2013.06.013
- The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions.Acta Psychol (Amst). 2014; 146: 1-6https://doi.org/10.1016/j.actpsy.2013.11.011
- Alpha oscillations are causally linked to inhibitory abilities in ageing.J Neurosci. 2018; 38: 4418-4429https://doi.org/10.1523/JNEUROSCI.1285-17.2018
- Replacing tDCS with theta tACS provides selective, but not general WM benefits.Brain Res. 2019; 1720146324https://doi.org/10.1016/j.brainres.2019.146324
- Slow theta tACS of the right parietal cortex enhances contralateral visual working memory capacity.Brain Topogr. 2019; 32: 477-481https://doi.org/10.1007/s10548-019-00702-2
- Modulating verbal working memory with fronto-parietal transcranial electric stimulation at theta frequency: does it work?.Eur J Neurosci. 2022; 55: 405-425https://doi.org/10.1111/ejn.15563
- Gamma oscillations modulate working memory recall precision.Exp Brain Res. 2021; 239: 2711-2724https://doi.org/10.1007/s00221-021-06051-6
- Interpretation of random effects meta-analyses.BMJ. 2011; 342: d549https://doi.org/10.1136/bmj.d549
- Statistical Power Analysis for the Behavioral Sciences.Academic Press, 1988
- Statistical Methods for Meta-Analysis.Academic Press, 1985https://doi.org/10.2307/1164953
- Measuring inconsistency in knowledgebases.J Intell Inf Syst. 2006; 27: 159-184https://doi.org/10.1007/s10844-006-2974-4
- How to assess publication bias: funnel plot, trim-and-fill method and selection models.Evid Based Ment Health. 2014; 17: 30https://doi.org/10.1136/eb-2013-101699
- Bias in meta-analysis detected by a simple, graphical test.BMJ. 1997; 315: 629-634
- A fail-safe N for effect size in meta-analysis.J Educ Stat. 1983; 8: 157-159
- Operating characteristics of a rank correlation test for publication bias.Biometrics. 1994; 50: 1088-1101
- Effect Size (ES).(. 2000. Accessed February 3, 2023. Retrieved from)
- The meaningfulness of effect sizes in psychological research: differences between sub-disciplines and the impact of potential biases.Front Psychol. 2019; 10: 813https://doi.org/10.3389/fpsyg.2019.00813
- It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function.Brain Stimul. 2015; 8: 253-259https://doi.org/10.1016/j.brs.2014.10.018
- Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials.Curr Biol. 2013; 23: 1449-1453https://doi.org/10.1016/j.cub.2013.06.022
- Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults.J Cogn Neurosci. 2011; 23: 2030-2045https://doi.org/10.1162/jocn.2010.21560
- Working memory load-dependent brain response predicts behavioral training gains in older adults.J Neurosci. 2014; 34: 1224-1233https://doi.org/10.1523/JNEUROSCI.2463-13.2014
- Effects of verbal and nonverbal interference on spatial and object visual working memory.Mem Cognit. 2005; 33: 203-212
- Hemispheric lateralization of verbal and spatial working memory during adolescence.Brain Cogn. 2013; 82: 58-68https://doi.org/10.1016/j.bandc.2013.02.007
- Superior parietal cortex is critical for the manipulation of information in working memory.J Neurosci. 2009; 29: 14980-14986https://doi.org/10.1523/JNEUROSCI.3706-09.2009
- The role of parietal cortex in verbal working memory.J Neurosci. 1998; 18: 5026-5034
- Improvement of the working memory by transcranial direct current stimulation in healthy older adults.J Korean Acad Rehab Med. 2011; 35: 201-206
- Speed-accuracy tradeoff.in: Encyclopedia of Clinical Neuropsychology. Springer, 2011: 2344https://doi.org/10.1007/978-3-319-56782-2_1247-3
- Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression [1].Depress Anxiety. 2006; 23: 482-484https://doi.org/10.1002/da.20201
- Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation.Brain Stimul. 2013; 6: 424-432https://doi.org/10.1016/j.brs.2012.04.011
- Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients.Restor Neurol Neurosci. 2007; 25: 123-129
- Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS).J Neurophysiol. 2010; 103: 1735-1740https://doi.org/10.1152/jn.00924.2009
- Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS.Sci Rep. 2022; 1214199https://doi.org/10.1038/s41598-022-18665-z
- Determining the individual theta frequency for associative memory targeted personalized transcranial brain stimulation.J Pers Med. 2022; 12: 1367https://doi.org/10.3390/jpm12091367
- Oscillatory delta and theta frequencies differentially support multiple items encoding to optimize memory performance during the digit span task.Neuroimage. 2022; 263119650https://doi.org/10.1016/j.neuroimage.2022.119650
- Effects of online parietal transcranial electric stimulation on associative memory: a direct comparison between tDCS, theta tACS, and theta-oscillatory tDCS.Sci Rep. 2022; 1214091https://doi.org/10.1038/s41598-022-18376-5
Article info
Publication history
Footnotes
Source(s) of financial support: This work was supported by the T32 Moss Rehabilitation Research Institute/University of Pennsylvania postdoctoral training fellowship (NIH 5T32HD071844-05) and the Laboratory for Cognition and Neural Stimulation at the University of Pennsylvania. The funding source had no role in the decision to submit for publication.
Conflict of Interest: The authors reported no conflict of interest.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy