Advertisement
Basic Research|Articles in Press

Sacral Nerve Stimulation Alleviates Intestinal Inflammation Through Regulating the Autophagy of Macrophages and Activating the Inflammasome Mediated by a Cholinergic Antiinflammatory Pathway in Colitis Rats

Published:February 03, 2023DOI:https://doi.org/10.1016/j.neurom.2023.01.005

      Abstract

      Background

      Inflammatory bowel disease (IBD) is characterized by chronic progressive intestinal inflammation. Sacral nerve stimulation (SNS) ameliorates colon inflammation caused by IBD. The aim of this study was to investigate the antiinflammatory benefits of SNS in colitis rats and explore the roles of the cholinergic antiinflammatory pathway, macrophage autophagy, and nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory bodies.

      Materials and Methods

      Rats were divided into four groups: healthy control, dextran sulfate sodium (DSS), DSS + sham-SNS, and DSS + SNS groups. An electrode was surgically placed in the right sacral nerve (S3) for stimulation. The disease activity index (DAI) score was recorded each day, and the degree of inflammatory injury was evaluated using hematoxylin and eosin staining. The alpha7 nicotinic acetylcholine receptor (α7nAChR) and autophagy- and NLRP3-related factors were assessed using immunofluorescence staining and Western blotting.

      Results

      The DSS group showed a higher DAI score, colon shortening, upregulated proinflammatory action, and colon damage, and the DSS + SNS group showed significantly improved symptoms. The number of α7nAChR+ cells and the expression level of autophagy decreased in the DSS group but increased in the DSS + SNS group. Conversely, the DSS group showed increased activation of NLRP3 inflammatory bodies, whereas the DSS + SNS group showed decreased activation of NLRP3 inflammatory bodies.

      Conclusion

      In this study, SNS ameliorated colon inflammation by enhancing macrophage autophagy and inhibiting the activation of NLRP3 inflammatory bodies, which may be related to the opening of the cholinergic antiinflammatory pathway.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sandborn W.J.
        • Feagan B.G.
        • D'haens G.
        • et al.
        Ozanimod as induction and maintenance therapy for ulcerative colitis.
        N Engl J Med. 2021; 385: 1280-1291https://doi.org/10.1056/NEJMoa2033617
        • Weingarden A.R.
        • Vaughn B.P.
        Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease.
        Gut Microbes. 2017; 8: 238-252https://doi.org/10.1080/19490976.2017.1290757
        • Al-Bawardy B.
        • Shivashankar R.
        • Proctor D.D.
        Novel and emerging therapies for inflammatory bowel disease.
        Front Pharmacol. 2021; 12651415https://doi.org/10.3389/fphar.2021.651415
        • Zhang N.
        • Zhang H.
        • Jiang L.
        • et al.
        A novel method of sacral nerve stimulation for colonic inflammation.
        Neurogastroenterol Motil. 2020; 32e13825https://doi.org/10.1111/nmo.13825
        • Payne S.C.
        • Furness J.B.
        • Stebbing M.J.
        Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 89-105https://doi.org/10.1038/s41575-018-0078-6
        • Rasmussen M.M.
        • Kutzenberger J.
        • Krogh K.
        • et al.
        Sacral anterior root stimulation improves bowel function in subjects with spinal cord injury.
        Spinal Cord. 2015; 53: 297-301https://doi.org/10.1038/sc.2015.2
        • Thin N.N.
        • Horrocks E.J.
        • Hotouras A.
        • et al.
        Systematic review of the clinical effectiveness of neuromodulation in the treatment of faecal incontinence.
        Br J Surg. 2013; 100: 1430-1447https://doi.org/10.1002/bjs.9226
        • Roda R.H.
        • Bargiela D.
        • Chen W.
        • et al.
        Large mitochondrial DNA deletions in HIV sensory neuropathy.
        Neurology. 2021; 97: e156-e165https://doi.org/10.1212/WNL.0000000000012142
        • Cheng J.
        • Shen H.
        • Chowdhury R.
        • Abdi T.
        • Selaru F.
        • Chen J.D.Z.
        Potential of electrical neuromodulation for inflammatory bowel disease.
        Inflamm Bowel Dis. 2020; 26: 1119-1130https://doi.org/10.1093/ibd/izz289
        • Liu Y.
        • Xu S.
        • Zhang H.
        • et al.
        Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis.
        Cell Death Dis. 2021; 12: 448https://doi.org/10.1038/s41419-021-03726-4
        • Seyedabadi M.
        • Rahimian R.
        • Ghia J.E.
        The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: involvement of different cellular pathways.
        Expert Opin Ther Targets. 2018; 22: 161-176https://doi.org/10.1080/14728222.2018.1420166
        • Jeong J.K.
        • Park S.Y.
        Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors.
        J Pineal Res. 2015; 59: 24-37https://doi.org/10.1111/jpi.12235
        • Tu L.
        • Gharibani P.
        • Zhang N.
        • Yin J.
        • Chen J.D.
        Anti-inflammatory effects of sacral nerve stimulation: a novel spinal afferent and vagal efferent pathway.
        Am J Physiol Gastrointest Liver Physiol. 2020; 318: G624-G634https://doi.org/10.1152/ajpgi.00330.2019
        • Larabi A.
        • Barnich N.
        • Nguyen H.T.T.
        New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.
        Autophagy. 2020; 16: 38-51https://doi.org/10.1080/15548627.2019.1635384
        • Fang J.
        • Wang J.
        • Chen F.
        • Xu Y.
        • Zhang H.
        • Wang Y.
        α7nAChR deletion aggravates myocardial infarction and enhances systemic inflammatory reaction via mTOR-signaling-related autophagy.
        Inflammation. 2019; 42: 1190-1202https://doi.org/10.1007/s10753-019-00979-2
        • Liu L.
        • Dong Y.
        • Ye M.
        • et al.
        The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans.
        J Crohns Colitis. 2017; 11: 737-750https://doi.org/10.1093/ecco-jcc/jjw219
        • Zhen Y.
        • Zhang H.
        NLRP3 inflammasome and inflammatory bowel disease.
        Front Immunol. 2019; 10: 276https://doi.org/10.3389/fimmu.2019.00276
        • Zhou M.
        • Xu W.
        • Wang J.
        • et al.
        Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury.
        EBiomedicine. 2018; 35: 345-360https://doi.org/10.1016/j.ebiom.2018.08.035
        • Matzel K.E.
        • Stadelmaie U.
        • Gall F.P.
        • Hohenfellner M.
        Electrical stimulation of sacral spinal nerves for treatment of faecal incontinence.
        Lancet. 1995; 346: 1124-1127https://doi.org/10.1016/s0140-6736(95)91799-3
        • Douven P.
        • Assmann R.
        • Breukink S.O.
        • et al.
        Sacral neuromodulation for lower urinary tract and bowel dysfunction in animal models: a systematic review with focus on stimulation parameter selection.
        Neuromodulation. 2020; 23: 1094-1107https://doi.org/10.1111/ner.13245
        • Evers J.
        • Devane L.
        • Carrington E.V.
        • et al.
        Effects of stimulation frequency and intensity in sacral neuromodulation on anorectal inputs to the somatosensory cortex in an experimental model.
        Br J Surg. 2014; 101: 1317-1328https://doi.org/10.1002/bjs.9587
        • Huang Z.
        • Li S.
        • Foreman R.D.
        • Yin J.
        • Dai N.
        • Chen J.D.Z.
        Sacral nerve stimulation with appropriate parameters improves constipation in rats by enhancing colon motility mediated via the autonomic-cholinergic mechanisms.
        Am J Physiol Gastrointest Liver Physiol. 2019; 317: G609-G617https://doi.org/10.1152/ajpgi.00150.2018
        • Pauwels N.
        • Willemse C.
        • Hellemans S.
        • et al.
        The role of neuromodulation in chronic functional constipation: a systematic review.
        Acta Gastroenterol Belg. 2021; 84: 467-476https://doi.org/10.51821/84.3.012
        • Liu Y.
        • Eastwood J.D.
        • Alba D.E.
        • et al.
        Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene.
        Gene Ther. 2022; 29: 368-378https://doi.org/10.1038/s41434-022-00333-6
        • Schreiber S.
        • Ben-Horin S.
        • Leszczyszyn J.
        • et al.
        Randomized controlled trial: subcutaneous vs intravenous infliximab CT-P13 maintenance in inflammatory bowel disease.
        Gastroenterology. 2021; 160: 2340-2353https://doi.org/10.1053/j.gastro.2021.02.068
        • Bonaz B.
        • Sinniger V.
        • Pellissier S.
        Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.
        J Intern Med. 2017; 282: 46-63https://doi.org/10.1111/joim.12611
        • Lindgren S.
        • Stewenius J.
        • Sjölund K.
        • Lilja B.
        • Sundkvist G.
        Autonomic vagal nerve dysfunction in patients with ulcerative colitis.
        Scand J Gastroenterol. 1993; 28: 638-642
        • Brégeon J.
        • Coron E.
        • Da Silva A.C.
        • et al.
        Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model.
        J Physiol. 2016; 594: 4309-4323https://doi.org/10.1113/JP271783
        • Pasricha T.S.
        • Zhang H.
        • Zhang N.
        • Chen J.D.Z.
        Sacral nerve stimulation prompts vagally-mediated amelioration of rodent colitis.
        Physiol Rep. 2020; 8e14294https://doi.org/10.14814/phy2.14294
        • Chen L.
        • Li R.
        • Wang Z.
        • et al.
        Lactate-utilizing bacteria ameliorates DSS-induced colitis in mice.
        Life Sci. 2022; 288120179https://doi.org/10.1016/j.lfs.2021.120179
        • Tu L.
        • Gharibani P.
        • Yin J.
        • Chen J.D.Z.
        Sacral nerve stimulation ameliorates colonic barrier functions in a rodent model of colitis.
        Neurogastroenterol Motil. 2020; 32e13916https://doi.org/10.1111/nmo.13916
        • Chen Y.
        • Guo Y.
        • Gharibani P.
        • Chen J.
        • Selaru F.M.
        • Chen J.D.Z.
        Transitional changes in gastrointestinal transit and rectal sensitivity from active to recovery of inflammation in a rodent model of colitis.
        Sci Rep. 2021; 11: 8284https://doi.org/10.1038/s41598-021-87814-7
        • Jin H.
        • Guo J.
        • Liu J.
        • et al.
        Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis.
        Am J Physiol Gastrointest Liver Physiol. 2017; 313: G192-G202https://doi.org/10.1152/ajpgi.00254.2016
        • Guo J.
        • Jin H.
        • Shi Z.
        • Yin J.
        • Pasricha T.
        • Chen J.D.Z.
        Sacral nerve stimulation improves colonic inflammation mediated by autonomic-inflammatory cytokine mechanism in rats.
        Neurogastroenterol Motil. 2019; 31e13676https://doi.org/10.1111/nmo.13676
        • Jin H.
        • Guo J.
        • Liu J.
        • et al.
        Autonomically mediated anti-inflammatory effects of electrical stimulation at acupoints in a rodent model of colonic inflammation.
        Neurogastroenterol Motil. 2019; 31e13615https://doi.org/10.1111/nmo.13615
        • Caravaca A.S.
        • Levine Y.A.
        • Drake A.
        • Eberhardson M.
        Olofsson PS. Vagus nerve stimulation reduces indomethacin-induced small bowel inflammation.
        Front Neurosci. 2022; 15730407https://doi.org/10.3389/fnins.2021.730407
        • de Araujo A.
        • de Lartigue G.
        Non-canonical cholinergic anti-inflammatory pathway in IBD.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 651-652https://doi.org/10.1038/s41575-020-0356-y
        • Borovikova L.V.
        • Ivanova S.
        • Zhang M.
        • et al.
        Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.
        Nature. 2000; 405: 458-462https://doi.org/10.1038/35013070
        • Foerster E.G.
        • Mukherjee T.
        • Cabral-Fernandes L.
        • Rocha J.D.B.
        • Girardin S.E.
        • Philpott D.J.
        How autophagy controls the intestinal epithelial barrier.
        Autophagy. 2022; 18: 86-103https://doi.org/10.1080/15548627.2021.1909406
        • Chen R.
        • Gao S.
        • Guan H.
        • et al.
        Naringin protects human nucleus pulposus cells against TNF-α-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation.
        Oxid Med Cell Longev. 2022; 20227655142https://doi.org/10.1155/2022/7655142
        • Lopes F.
        • Keita Å.V.
        • Saxena A.
        • et al.
        ER-stress mobilization of death-associated protein kinase-1-dependent xenophagy counteracts mitochondria stress-induced epithelial barrier dysfunction.
        J Biol Chem. 2018; 293: 3073-3087https://doi.org/10.1074/jbc.RA117.000809
        • Tao Z.
        • Zhou X.
        • Zhang Y.
        • et al.
        Lei san attenuates dextran sulfate sodium-induced colitis in rats and TNF-α-stimulated colitis in CACO2 cells: involvement of the NLRP3 inflammasome and autophagy.
        Mediators Inflamm. 2021; 20211610251https://doi.org/10.1155/2021/1610251
        • Arab H.H.
        • Al-Shorbagy M.Y.
        • Saad M.A.
        Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways.
        Chem Biol Interact. 2021; 335109368https://doi.org/10.1016/j.cbi.2021.109368
        • Ziegler P.K.
        • Bollrath J.
        • Pallangyo C.K.
        • et al.
        Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis.
        Cell. 2018; 174: 88-101.e16https://doi.org/10.1016/j.cell.2018.05.028
        • Zhao X.
        • Yu Z.
        • Lv Z.
        • et al.
        Activation of Alpha-7 nicotinic acetylcholine receptors (α7nAChR) promotes the protective autophagy in LPS-induced acute lung injury (ALI) in vitro and in vivo.
        Inflammation. 2019; 42: 2236-2245https://doi.org/10.1007/s10753-019-01088-w
        • Serafini M.A.
        • Paz A.H.
        • Nunes N.S.
        Cholinergic immunomodulation in inflammatory bowel diseases.
        Brain Behav Immun Health. 2021; 19100401https://doi.org/10.1016/j.bbih.2021.100401
        • Cosin-Roger J.
        • Simmen S.
        • Melhem H.
        • et al.
        Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation.
        Nat Commun. 2017; 8: 98https://doi.org/10.1038/s41467-017-00213-3
        • Luu L.D.W.
        • Kaakoush N.O.
        • Castaño-Rodríguez N.
        The role of ATG16L2 in autophagy and disease.
        Autophagy. 2022; 18: 2537-2546https://doi.org/10.1080/15548627.2022.2042783
        • Bauer C.
        • Duewell P.
        • Mayer C.
        • et al.
        Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome.
        Gut. 2010; 59: 1192-1199https://doi.org/10.1136/gut.2009.197822
        • Verma A.
        • Pittala S.
        • Alhozeel B.
        • et al.
        The role of the mitochondrial protein VDAC1 in inflammatory bowel disease: a potential therapeutic target.
        Mol Ther. 2022; 30: 726-744https://doi.org/10.1016/j.ymthe.2021.06.024
        • Goodman W.A.
        • Erkkila I.P.
        • Pizarro T.T.
        Sex matters: impact on pathogenesis, presentation and treatment of inflammatory bowel disease.
        Nat Rev Gastroenterol Hepatol. 2020; 17: 740-754https://doi.org/10.1038/s41575-020-0354-0

      Comments