Advertisement
Clinical Research|Articles in Press

Pilot Study to Investigate the Use of In-Clinic Sensing to Identify Optimal Stimulation Parameters for Deep Brain Stimulation Therapy in Parkinson’s Disease

Published:February 14, 2023DOI:https://doi.org/10.1016/j.neurom.2023.01.006

      Abstract

      Background

      Deep brain stimulation (DBS) programming is time intensive. Recent advances in sensing technology of local field potentials (LFPs) may enable improvements. Few studies have compared the use of this technology with standard of care.

      Objective/Hypothesis

      Sensing technology of subthalamic nucleus (STN) DBS leads in Parkinson’s disease (PD) is reliable and predicts the optimal contacts and settings as predicted by clinical assessment.

      Materials and Methods

      Five subjects with PD (n = 9 hemispheres) with bilateral STN DBS and sensing capable battery replacement were recruited. An LFP sensing review of all bipolar contact pairs was performed three times. Contact with the maximal beta peak power (MBP) was then clinically assessed in a double-blinded fashion, and five conditions were tested: 1) entry settings, 2) off stimulation, 3) MBP at 30 μs, 4) MBP at 60 μs, and 5) MBP at 90 μs.

      Results

      Contact and frequency of the MBP power in all hemispheres did not differ across sessions. The entry settings matched with the contact with the MBP power in 5 of 9 hemispheres. No clinical difference was evident in the stimulation conditions. The clinician and subject preferred settings determined by MBP power in 7 of 9 and 5 of 7 hemispheres, respectively.

      Conclusions

      This study indicates that STN LFPs in PD recorded directly from contacts of the DBS lead provide consistent recordings across the frequency range and a reliably detected beta peak. Furthermore, programming based on the MBP power provides at least clinical equivalence to standard of care programming with STN DBS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cagnan H.
        • Denison T.
        • McIntyre C.
        • Brown P.
        Emerging technologies for improved deep brain stimulation.
        Nat Biotechnol. 2019; 37: 1024-1033
        • Hogg E.
        • Wertheimer J.
        • Graner S.
        • Tagliati M.
        Deep brain stimulation and nonmotor symptoms.
        Int Rev Neurobiol. 2017; 134: 1045-1089
        • Liu Y.
        • Li W.
        • Tan C.
        • et al.
        Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease.
        J Neurosurg. 2014; 121: 709-718
        • Moustafa A.A.
        • Chakravarthy S.
        • Phillips J.R.
        • et al.
        Motor symptoms in Parkinson’s disease: a unified framework.
        Neurosci Biobehav Rev. 2016; 68: 727-740
        • Krack P.
        • Batir A.
        • Van Blercom N.
        • et al.
        Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease.
        N Engl J Med. 2003; 349: 1925-1934
        • Limousin P.
        • Krack P.
        • Pollak P.
        • et al.
        Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease.
        N Engl J Med. 1998; 339: 1105-1111
        • Thompson J.A.
        • Oukal S.
        • Bergman H.
        • et al.
        Semi-automated application for estimating subthalamic nucleus boundaries and optimal target selection for deep brain stimulation implantation surgery.
        J Neurosurg. Published online May 18. 2018; https://doi.org/10.3171/2017.12.JNS171964
        • Brown P.
        Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease.
        Mov Disord. 2003; 18: 357-363
        • Hammond C.
        • Bergman H.
        • Brown P.
        Pathological synchronization in Parkinson’s disease: networks, models and treatments.
        Trends Neurosci. 2007; 30: 357-364
        • Jenkinson N.
        • Brown P.
        New insights into the relationship between dopamine, beta oscillations and motor function.
        Trends Neurosci. 2011; 34: 611-618
        • Kühn A.A.
        • Trottenberg T.
        • Kivi A.
        • Kupsch A.
        • Schneider G.H.
        • Brown P.
        The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease.
        Exp Neurol. 2005; 194: 212-220
        • Tinkhauser G.
        • Moraud E.M.
        Controlling clinical states governed by different temporal dynamics with closed-loop deep brain stimulation: a principled framework.
        Front Neurosci. 2021; 15734186
        • Tinkhauser G.
        • Pogosyan A.
        • Little S.
        • et al.
        The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease.
        Brain. 2017; 140: 1053-1067
        • Tinkhauser G.
        • Pogosyan A.
        • Tan H.
        • Herz D.M.
        • Kühn A.A.
        • Brown P.
        Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.
        Brain. 2017; 140: 2968-2981
        • Torrecillos F.
        • Tinkhauser G.
        • Fischer P.
        • et al.
        Modulation of beta bursts in the subthalamic nucleus predicts motor performance.
        J Neurosci. 2018; 38: 8905-8917
        • Hamani C.
        • Florence G.
        • Heinsen H.
        • et al.
        Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives.
        eNeuro. 2017; 4 (ENEURO.0140-17.2017)
        • Horn A.
        • Neumann W.J.
        • Degen K.
        • Schneider G.H.
        • Kühn A.A.
        Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus.
        Hum Brain Mapp. 2017; 38: 3377-3390
        • Tinkhauser G.
        • Torrecillos F.
        • Duclos Y.
        • et al.
        Beta burst coupling across the motor circuit in Parkinson’s disease.
        Neurobiol Dis. 2018; 117: 217-225
        • Yin Z.
        • Zhu G.
        • Zhao B.
        • et al.
        Local field potentials in Parkinson’s disease: a frequency-based review.
        Neurobiol Dis. 2021; 155105372
        • Koss A.M.
        • Alterman R.L.
        • Tagliati M.
        • Shils J.L.
        Calculating total electrical energy delivered by deep brain stimulation systems.
        Ann Neurol. 2005; 58 ([author reply: 168–169]): 168
        • Moro E.
        • Lang A.E.
        • Strafella A.P.
        • et al.
        Bilateral globus pallidus stimulation for Huntington's disease.
        Ann Neurol. 2004; 56: 290-294
        • Goetz C.G.
        • Tilley B.C.
        • Shaftman S.R.
        • et al.
        Movement Disorder Society-sponsored revision of the Unified Parkinson’s disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results.
        Mov Disord. 2008; 23: 2129-2170
        • Buhlmann J.
        • Hofmann L.
        • Tass P.A.
        • Hauptmann C.
        Modeling of a segmented electrode for desynchronizing deep brain stimulation.
        Front Neuroeng. 2011; 4: 15
        • Calin-Jageman R.J.
        • Cumming G.
        Estimation for better inference in neuroscience.
        eNeuro. 2019; 6 (ENEURO.0205-19.2019)
        • Hammer L.H.
        • Kochanski R.B.
        • Starr P.A.
        • Little S.
        Artifact characterization and a multipurpose template-based offline removal solution for a sensing-enabled deep brain stimulation device.
        Stereotact Funct Neurosurg. 2022; 100: 168-183
        • Chen Y.
        • Ma B.
        • Hao H.
        • Li L.
        Removal of electrocardiogram artifacts from local field potentials recorded by sensing-enabled neurostimulator.
        Front Neurosci. 2021; 15637274
        • Neumann W.J.
        • Memarian Sorkhabi M.
        • Benjaber M.
        • et al.
        The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces.
        Brain Stimul. 2021; 14: 1301-1306
        • Al-Ozzi T.M.
        • Botero-Posada L.F.
        • Lopez Rios A.L.
        • Hutchison W.D.
        Single unit and beta oscillatory activities in subthalamic nucleus are modulated during visual choice preference.
        Eur J Neurosci. 2021; 53: 2220-2233
        • Kühn A.A.
        • Williams D.
        • Kupsch A.
        • et al.
        Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance.
        Brain. 2004; 127: 735-746
        • Averna A.
        • Marceglia S.
        • Arlotti M.
        • et al.
        Influence of inter-electrode distance on subthalamic nucleus local field potential recordings in Parkinson’s disease.
        Clin Neurophysiol. 2022; 133: 29-38
        • Rao A.T.
        • Lu C.W.
        • Askari A.
        • Malaga K.A.
        • Chou K.L.
        • Patil P.G.
        Clinically-derived oscillatory biomarker predicts optimal subthalamic stimulation for Parkinson’s disease.
        J Neural Eng. 2022; 19
        • Abosch A.
        • Lanctin D.
        • Onaran I.
        • Eberly L.
        • Spaniol M.
        • Ince N.F.
        Long-term recordings of local field potentials from implanted deep brain stimulation electrodes.
        Neurosurgery. 2012; 71: 804-814
        • Anderson R.W.
        • Wilkins K.B.
        • Parker J.E.
        • et al.
        Lack of progression of beta dynamics after long-term subthalamic neurostimulation.
        Ann Clin Transl Neurol. 2021; 8: 2110-2120
        • Chen Y.
        • Gong C.
        • Tian Y.
        • et al.
        Neuromodulation effects of deep brain stimulation on beta rhythm: a longitudinal local field potential study.
        Brain Stimul. 2020; 13: 1784-1792
        • Cummins D.D.
        • Kochanski R.B.
        • Gilron R.
        • et al.
        Chronic sensing of subthalamic local field potentials: comparison of first and second generation implantable bidirectional systems within a single subject.
        Front Neurosci. 2021; 15725797
        • Neumann W.J.
        • Staub-Bartelt F.
        • Horn A.
        • et al.
        Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson’s disease.
        Clin Neurophysiol. 2017; 128: 2286-2291
        • Swann N.C.
        • de Hemptinne C.
        • Thompson M.C.
        • et al.
        Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing.
        J Neural Eng. 2018; 15046006
        • Fernández-García C.
        • Monje M.H.G.
        • Gómez-Mayordomo V.
        • et al.
        Long-term directional deep brain stimulation: monopolar review vs. local field potential guided programming.
        Brain Stimul. 2022; 15: 727-736
        • Tinkhauser G.
        • Pogosyan A.
        • Debove I.
        • et al.
        Directional local field potentials: a tool to optimize deep brain stimulation.
        Mov Disord. 2018; 33: 159-164
        • Lange F.
        • Steigerwald F.
        • Engel D.
        • et al.
        Longitudinal assessment of rotation angles after implantation of directional deep brain stimulation leads.
        Stereotact Funct Neurosurg. 2021; 99: 150-158
        • Godinho F.
        • Fim Neto A.
        • Bianqueti B.L.
        • et al.
        Spectral characteristics of subthalamic nucleus local field potentials in Parkinson’s disease: phenotype and movement matter.
        Eur J Neurosci. 2021; 53: 2804-2818
        • Neuville R.S.
        • Petrucci M.N.
        • Wilkins K.B.
        • et al.
        Differential effects of pathological beta burst dynamics between Parkinson’s disease phenotypes across different movements.
        Front Neurosci. 2021; 15733203
        • Telkes I.
        • Viswanathan A.
        • Jimenez-Shahed J.
        • et al.
        Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease.
        Proc Natl Acad Sci U S A. 2018; 115: E8567-E8576
        • Moro E.
        • Poon Y.Y.
        • Lozano A.M.
        • Saint-Cyr J.A.
        • Lang A.E.
        Subthalamic nucleus stimulation: improvements in outcome with reprogramming.
        Arch Neurol. 2006; 63: 1266-1272
        • Chiu S.Y.
        • Patel B.
        • Burns M.R.
        • et al.
        High-dose botulinum toxin therapy: safety, benefit, and endurance of efficacy.
        Tremor Other Hyperkinet Mov (N Y). 2020; 10
        • Kern D.S.
        • Uy D.
        • Rhoades R.
        • Ojemann S.
        • Abosch A.
        • Thompson J.A.
        Discrete changes in brain volume after deep brain stimulation in patients with Parkinson’s disease.
        J Neurol Neurosurg Psychiatry. 2020; 91: 928-937
        • Chen C.C.
        • Yeh C.H.
        • Chan H.L.
        • et al.
        Subthalamic nucleus oscillations correlate with vulnerability to freezing of gait in patients with Parkinson’s disease.
        Neurobiol Dis. 2019; 132104605
        • Fischer P.
        • Chen C.C.
        • Chang Y.J.
        • et al.
        Alternating modulation of subthalamic nucleus beta oscillations during stepping.
        J Neurosci. 2018; 38: 5111-5121
        • Lofredi R.
        • Neumann W.J.
        • Bock A.
        • et al.
        Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease.
        Elife. 2018; 7e31895
        • Swann N.C.
        • de Hemptinne C.
        • Miocinovic S.
        • et al.
        Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease.
        J Neurosci. 2016; 36: 6445-6458
        • van Wijk B.C.M.
        • Pogosyan A.
        • Hariz M.I.
        • et al.
        Localization of beta and high-frequency oscillations within the subthalamic nucleus region.
        Neuroimage Clin. 2017; 16: 175-183
        • van Rheede J.J.
        • Feldmann L.K.
        • Busch J.L.
        • et al.
        Diurnal modulation of subthalamic beta oscillatory power in Parkinson’s disease patients during deep brain stimulation.
        NPJ Parkinsons Dis. 2022; 8: 88

      Comments