Advertisement
Basic Research|Articles in Press

Subthalamic Nucleus Deep Brain Stimulation Restores Motor and Sensorimotor Cortical Neuronal Oscillatory Activity in the Free-Moving 6-Hydroxydopamine Lesion Rat Parkinson Model

      Abstract

      Objectives

      Enhanced beta oscillations in cortical-basal ganglia (BG) thalamic circuitries have been linked to clinical symptoms of Parkinson’s disease. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces beta band activity in BG regions, whereas little is known about activity in cortical regions. In this study, we investigated the effect of STN DBS on the spectral power of oscillatory activity in the motor cortex (MCtx) and sensorimotor cortex (SMCtx) by recording via an electrocorticogram (ECoG) array in free-moving 6-hydroxydopamine (6-OHDA) lesioned rats and sham-lesioned controls.

      Materials and Methods

      Male Sprague–Dawley rats (250–350 g) were injected either with 6-OHDA or with saline in the right medial forebrain bundle, under general anesthesia. A stimulation electrode was then implanted in the ipsilateral STN, and an ECoG array was placed subdurally above the MCtx and SMCtx areas. Six days after the second surgery, the free-moving rats were individually recorded in three conditions: 1) basal activity, 2) during STN DBS, and 3) directly after STN DBS.

      Results

      In 6-OHDA-lesioned rats (N = 8), the relative power of theta band activity was reduced, whereas activity of broad-range beta band (12–30 Hz) along with two different subbeta bands, that is, low (12–30 Hz) and high (20–30 Hz) beta band and gamma band, was higher in MCtx and SMCtx than in sham-lesioned controls (N = 7). This was, to some extent, reverted toward control level by STN DBS during and after stimulation. No major differences were found between contacts of the electrode grid or between MCtx and SMCtx.

      Conclusion

      Loss of nigrostriatal dopamine leads to abnormal oscillatory activity in both MCtx and SMCtx, which is compensated by STN stimulation, suggesting that parkinsonism-related oscillations in the cortex and BG are linked through their anatomic connections.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krauss J.K.
        • Lipsman N.
        • Aziz T.
        • et al.
        Technology of deep brain stimulation: current status and future directions.
        Nat Rev Neurol. 2021; 17: 75-87https://doi.org/10.1038/s41582-020-00426-z
        • Tinkhauser G.
        • Torrecillos F.
        • Duclos Y.
        • et al.
        Beta burst coupling across the motor circuit in Parkinson’s disease.
        Neurobiol Dis. 2018; 117: 217-225https://doi.org/10.1016/j.nbd.2018.06.007
        • Deffains M.
        • Iskhakova L.
        • Katabi S.
        • Israel Z.
        • Bergman H.
        Longer β oscillatory episodes reliably identify pathological subthalamic activity in Parkinsonism.
        Mov Disord. 2018; 33: 1609-1618https://doi.org/10.1002/mds.27418
        • Eusebio A.
        • Cagnan H.
        • Brown P.
        Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease?.
        Front Integr Neurosci. 2012; 6: 47https://doi.org/10.3389/fnint.2012.00047
        • Little S.
        • Pogosyan A.
        • Kuhn A.A.
        • Brown P.
        β band stability over time correlates with Parkinsonian rigidity and bradykinesia.
        Exp Neurol. 2012; 236: 383-388https://doi.org/10.1016/j.expneurol.2012.04.024
        • Weinberger M.
        • Hutchison W.D.
        • Alavi M.
        • et al.
        Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia.
        Clin Neurophysiol. 2012; 123: 358-368https://doi.org/10.1016/j.clinph.2011.07.029
        • Brown P.
        Bad oscillations in Parkinson’s disease.
        J Neural Transm Suppl. 2006; : 27-30https://doi.org/10.1007/978-3-211-45295-0_6
        • Little S.
        • Brown P.
        Focusing brain therapeutic interventions in space and time for Parkinson’s disease.
        Curr Biol. 2014; 24: R898-R909https://doi.org/10.1016/j.cub.2014.08.002
        • Piña-Fuentes D.
        • van Dijk JMC M.B.
        Adaptive DBS in Parkinson’s disease: headlines, perspectives and challenges.
        Brain Stimul. 2019; 12: 1091-1092https://doi.org/10.1016/j.brs.2019.04.014
        • Meidahl A.C.
        • Tinkhauser G.
        • Herz D.M.
        • Cagnan H.
        • Debarros J.
        • Brown P.
        Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy.
        Mov Disord. 2017; 32: 810-819https://doi.org/10.1002/mds.27022
        • Priori A.
        • Foffani G.
        • Pesenti A.
        • et al.
        Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease.
        Exp Neurol. 2004; 189: 369-379https://doi.org/10.1016/J.EXPNEUROL.2004.06.001
        • Fogelson N.
        • Williams D.
        • Tijssen M.
        • Van Bruggen G.
        • Speelman H.
        • Brown P.
        Different functional loops between cerebral cortex and the subthalmic area in Parkinson’s disease.
        Cereb Cortex. 2006; 16: 64-75https://doi.org/10.1093/CERCOR/BHI084
        • Plate A.
        • Hell F.
        • Mehrkens J.H.
        • et al.
        Peaks in the beta band of the human subthalamic nucleus: a case for low beta and high beta activity.
        J Neurosurg. 2021; 136: 672-680https://doi.org/10.3171/2021.3.JNS204113
        • Feldmann L.K.
        • Lofredi R.
        • Neumann W.J.
        • et al.
        Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings.
        NPJ Parkinsons Dis. 2022; 8: 44https://doi.org/10.1038/S41531-022-00301-2
        • Chen Y.
        • Gong C.
        • Tian Y.
        • et al.
        Neuromodulation effects of deep brain stimulation on beta rhythm: a longitudinal local field potential study.
        Brain Stimul. 2020; 13: 1784-1792https://doi.org/10.1016/J.BRS.2020.09.027
        • Su D.
        • Chen H.
        • Hu W.
        • et al.
        Frequency-dependent effects of subthalamic deep brain stimulation on motor symptoms in Parkinson’s disease: a meta-analysis of controlled trials.
        Sci Rep. 2018; 814456https://doi.org/10.1038/S41598-018-32161-3
        • Florin E.
        • Erasmi R.
        • Reck C.
        • et al.
        Does increased gamma activity in patients suffering from Parkinson’s disease counteract the movement inhibiting beta activity?.
        Neuroscience. 2013; 237: 42-50https://doi.org/10.1016/j.neuroscience.2013.01.051
        • Trottenberg T.
        • Fogelson N.
        • Kühn A.A.
        • et al.
        Subthalamic gamma activity in patients with Parkinson’s disease.
        Exp Neurol. 2006; 200: 56-65https://doi.org/10.1016/j.expneurol.2006.01.012
        • Crowell A.L.
        • Ryapolova-Webb E.S.
        • Ostrem J.L.
        • et al.
        Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.
        Brain. 2012; 135: 615-630https://doi.org/10.1093/brain/awr332
        • Alam M.
        • Capelle H.H.
        • Schwabe K.
        • Krauss J.K.
        Effect of deep brain stimulation on levodopa-induced dyskinesias and striatal oscillatory local field potentials in a rat model of Parkinson’s disease.
        Brain Stimul. 2014; 7: 13-20https://doi.org/10.1016/j.brs.2013.09.001
        • Alam M.
        • Rumpel R.
        • Jin X.
        • et al.
        Altered somatosensory cortex neuronal activity in a rat model of Parkinson’s disease and levodopa-induced dyskinesias.
        Exp Neurol. 2017; 294: 19-31https://doi.org/10.1016/j.expneurol.2017.04.011
        • Grandi L.C.
        • Kaelin-Lang A.
        • Orban G.
        • et al.
        Oscillatory activity in the cortex, motor thalamus and nucleus reticularis thalami in acute TTX and chronic 6-OHDA dopamine-depleted animals.
        Front Neurol. 2018; 9: 663https://doi.org/10.3389/fneur.2018.00663
        • Alonso-Frech F.
        • Zamarbide I.
        • Alegre M.
        • et al.
        Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease.
        Brain. 2006; 129: 1748-1757https://doi.org/10.1093/brain/awl103
        • Foffani G.
        • Ardolino G.
        • Meda B.
        • et al.
        Altered subthalamo-pallidal synchronisation in parkinsonian dyskinesias.
        J Neurol Neurosurg Psychiatry. 2005; 76: 426-428https://doi.org/10.1136/jnnp.2004.043547
        • Wang Q.
        • Chen J.
        • Li M.
        • et al.
        Eltoprazine prevents levodopa-induced dyskinesias by reducing causal interactions for theta oscillations in the dorsolateral striatum and substantia nigra pars reticulate.
        Neuropharmacology. 2019; 148: 1-10https://doi.org/10.1016/j.neuropharm.2018.12.027
        • Conte A.
        • Khan N.
        • Defazio G.
        • Rothwell J.C.
        • Berardelli A.
        Pathophysiology of somatosensory abnormalities in Parkinson disease.
        Nat Rev Neurol. 2013; 9: 687-697https://doi.org/10.1038/nrneurol.2013.224
        • Abbruzzese G.
        • Berardelli A.
        Sensorimotor integration in movement disorders.
        Mov Disord. 2003; 18: 231-240https://doi.org/10.1002/mds.10327
        • Helmich R.C.
        • Derikx L.C.
        • Bakker M.
        • Scheeringa R.
        • Bloem B.R.
        • Toni I.
        Spatial remapping of cortico-striatal connectivity in Parkinson’s disease.
        Cereb Cortex. 2010; 20: 1175-1186https://doi.org/10.1093/cercor/bhp178
        • Esposito F.
        • Tessitore A.
        • Giordano A.
        • et al.
        Rhythm-specific modulation of the sensorimotor network in drug-naïve patients with Parkinson’s disease by levodopa.
        Brain. 2013; 136: 710-725https://doi.org/10.1093/brain/awt007
        • Buhmann C.
        • Glauche V.
        • Stürenburg H.J.
        • Oechsner M.
        • Weiller C.
        • Büchel C.
        Pharmacologically modulated fMRI---cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients.
        Brain. 2003; 126: 451-461https://doi.org/10.1093/brain/awg033
        • Haslinger B.
        • Erhard P.
        • Kämpfe N.
        • et al.
        Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa.
        Brain. 2001; 124: 558-570https://doi.org/10.1093/brain/124.3.558
        • Sabatini U.
        • Boulanouar K.
        • Fabre N.
        • et al.
        Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study.
        Brain. 2000; 123: 394-403https://doi.org/10.1093/brain/123.2.394
        • Deuschl G.
        • Schade-Brittinger C.
        • Krack P.
        • et al.
        A randomized trial of deep-brain stimulation for Parkinson’s disease.
        N Engl J Med. 2006; 355: 896-908https://doi.org/10.1056/nejmoa060281
        • Weaver F.M.
        • Follett K.A.
        • Stern M.
        • et al.
        Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes.
        Neurology. 2012; 79: 55-65https://doi.org/10.1212/WNL.0b013e31825dcdc1
        • Odekerken V.J.J.
        • van Laar T.
        • Staal M.J.
        • et al.
        Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial.
        Lancet Neurol. 2013; 12: 37-44https://doi.org/10.1016/s1474-4422(12)70264-8
        • Fasano A.
        • Aquino C.C.
        • Krauss J.K.
        • Honey C.R.
        • Bloem B.R.
        Axial disability and deep brain stimulation in patients with Parkinson disease.
        Nat Rev Neurol. 2015; 11: 98-110https://doi.org/10.1038/nrneurol.2014.252
        • Limousin P.
        • Foltynie T.
        Long-term outcomes of deep brain stimulation in Parkinson disease.
        Nat Rev Neurol. 2019; 15: 234-242https://doi.org/10.1038/s41582-019-0145-9
        • Lozano A.M.
        • Lipsman N.
        • Bergman H.
        • et al.
        Deep brain stimulation: current challenges and future directions.
        Nat Rev Neurol. 2019; 15: 148-160https://doi.org/10.1038/S41582-018-0128-2
        • Li Z.
        • Guo Y.
        • Bao X.
        • et al.
        Effects of subthalamic deep brain stimulation with different frequencies in a parkinsonian rat model.
        Neuromodulation. 2021; 24: 220-228https://doi.org/10.1111/NER.13239
        • Johnson L.A.
        • Xu W.
        • Baker K.B.
        • Zhang J.
        • Vitek J.L.
        Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.
        J Neurophysiol. 2015; 113: 2549-2554https://doi.org/10.1152/jn.00997.2014
        • Brunenberg E.J.L.
        • Moeskops P.
        • Backes W.H.
        • et al.
        Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway.
        PLoS One. 2012; 7e39061https://doi.org/10.1371/journal.pone.0039061
        • Haynes W.I.A.
        • Haber S.N.
        The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation.
        J Neurosci. 2013; 33: 4804-4814https://doi.org/10.1523/JNEUROSCI.4674-12.2013
        • Mottaghi S.
        • Kohl S.
        • Biemann D.
        • et al.
        Bilateral intracranial beta activity during forced and spontaneous movements in a 6-OHDA hemi-PD rat model.
        Front Neurosci. 2021; 15700672https://doi.org/10.3389/FNINS.2021.700672
        • Polar C.A.
        • Gupta R.
        • Lehmkuhle M.J.
        • Dorval A.D.
        Correlation between cortical beta power and gait speed is suppressed in a parkinsonian model, but restored by therapeutic deep brain stimulation.
        Neurobiol Dis. 2018; 117: 137-148https://doi.org/10.1016/J.NBD.2018.05.013
        • Anderson C.J.
        • Sheppard D.T.
        • Huynh R.
        • Anderson D.N.
        • Polar C.A.
        • Dorval A.D.
        Subthalamic deep brain stimulation reduces pathological information transmission to the thalamus in a rat model of parkinsonism.
        Front Neural Circuits. 2015; 9: 31https://doi.org/10.3389/FNCIR.2015.00031
        • Konerding W.S.
        • Froriep U.P.
        • Kral A.
        • Baumhoff P.
        New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents.
        Sci Rep. 2018; 8: 3825https://doi.org/10.1038/s41598-018-22051-z
        • Tamás A.
        • Lubics A.
        • Szalontay L.
        • Lengvári I.
        • Reglodi D.
        Age and gender differences in behavioral and morphological outcome after 6-hydroxydopamine-induced lesion of the substantia nigra in rats.
        Behav Brain Res. 2005; 158: 221-229https://doi.org/10.1016/J.BBR.2004.09.002
        • Murray H.E.
        • Pillai A.V.
        • Mcarthur S.R.
        • et al.
        Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females.
        Neuroscience. 2003; 116: 213-222https://doi.org/10.1016/S0306-4522(02)00578-X
        • Schwarting R.K.W.
        • Huston J.P.
        The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments.
        Prog Neurobiol. 1996; 50: 275-331https://doi.org/10.1016/S0301-0082(96)00040-8
        • Hudson J.L.
        • van Horne C.G.
        • Strömberg I.
        • et al.
        Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats.
        Brain Res. 1993; 626: 167-174https://doi.org/10.1016/0006-8993(93)90576-9
        • Gulberti A.
        • Moll C.K.E.
        • Hamel W.
        • et al.
        Predictive timing functions of cortical beta oscillations are impaired in Parkinson’s disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus.
        NeuroImage Clin. 2015; 9: 436-449https://doi.org/10.1016/j.nicl.2015.09.013
        • Silberstein P.
        • Kühn A.A.
        • Kupsch A.
        • et al.
        Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia.
        Brain. 2003; 126: 2597-2608https://doi.org/10.1093/BRAIN/AWG267
        • Neumann W.J.
        • Degen K.
        • Schneider G.H.
        • et al.
        Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease.
        Mov Disord. 2016; 31: 1748-1751https://doi.org/10.1002/MDS.26759
        • Wang D.D.
        • de Hemptinne C.
        • Miocinovic S.
        • et al.
        Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease.
        J Neurosci. 2018; 38: 4556-4568https://doi.org/10.1523/JNEUROSCI.0431-18.2018
        • Zhou Q.
        • Lin J.
        • Yao L.
        • Wang Y.
        • Han Y.
        • Xu K.
        Relative power correlates with the decoding performance of motor imagery both across time and subjects.
        Front Hum Neurosci. 2021; 15701091https://doi.org/10.3389/FNHUM.2021.701091
        • Sharott A.
        • Gulberti A.
        • Hamel W.
        • et al.
        Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson’s disease.
        Neurobiol Dis. 2018; 112: 49-62https://doi.org/10.1016/j.nbd.2018.01.001
        • Shimamoto S.A.
        • Ryapolova-Webb E.S.
        • Ostrem J.L.
        • Galifianakis N.B.
        • Miller K.J.
        • Starr P.A.
        Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease.
        J Neurosci. 2013; 33: 7220-7233https://doi.org/10.1523/JNEUROSCI.4676-12.2013
        • Brown P.
        Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease.
        Mov Disord. 2003; 18: 357-363https://doi.org/10.1002/mds.10358
        • Hammond C.
        • Bergman H.
        • Brown P.
        Pathological synchronization in Parkinson’s disease: networks, models and treatments.
        Trends Neurosci. 2007; 30: 357-364https://doi.org/10.1016/j.tins.2007.05.004
        • Silberstein P.
        • Pogosyan A.
        • Kühn A.A.
        • et al.
        Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy.
        Brain. 2005; 128: 1277-1291https://doi.org/10.1093/brain/awh480
        • Pollok B.
        • Krause V.
        • Martsch W.
        • Wach C.
        • Schnitzler A.
        • Südmeyer M.
        Motor-cortical oscillations in early stages of Parkinson’s disease.
        J Physiol. 2012; 590: 3203-3212https://doi.org/10.1113/jphysiol.2012.231316
        • Levy R.
        • Ashby P.
        • Hutchison W.D.
        • Lang A.E.
        • Lozano A.M.
        • Dostrovsky J.O.
        Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease.
        Brain. 2002; 125: 1196-1209https://doi.org/10.1093/brain/awf128
        • Sharott A.
        • Magill P.J.
        • Harnack D.
        • Kupsch A.
        • Meissner W.
        • Brown P.
        Dopamine depletion increases the power and coherence of β-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat.
        Eur J Neurosci. 2005; 21: 1413-1422https://doi.org/10.1111/j.1460-9568.2005.03973.x
        • Mallet N.
        • Pogosyan A.
        • Sharott A.
        • et al.
        Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex.
        J Neurosci. 2008; 28: 4795-4806https://doi.org/10.1523/JNEUROSCI.0123-08.2008
        • Brazhnik E.
        • Cruz A.V.
        • Avila I.
        • et al.
        State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.
        J Neurosci. 2012; 32: 7869-7880https://doi.org/10.1523/JNEUROSCI.0943-12.2012
        • Alam M.
        • Heissler H.E.
        • Schwabe K.
        • Krauss J.K.
        Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model.
        Exp Neurol. 2012; 233: 233-242https://doi.org/10.1016/j.expneurol.2011.10.006
        • Bronte-Stewart H.
        • Barberini C.
        • Koop M.M.
        • Hill B.C.
        • Henderson J.M.
        • Wingeier B.
        The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation.
        Exp Neurol. 2009; 215: 20-28https://doi.org/10.1016/j.expneurol.2008.09.008
        • Kühn A.A.
        • Kempf F.
        • Brücke C.
        • et al.
        High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance.
        J Neurosci. 2008; 28: 6165-6173https://doi.org/10.1523/JNEUROSCI.0282-08.2008
        • Wingeier B.
        • Tcheng T.
        • Koop M.M.
        • Hill B.C.
        • Heit G.
        • Bronte-Stewart H.M.
        Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease.
        Exp Neurol. 2006; 197: 244-251https://doi.org/10.1016/j.expneurol.2005.09.016
        • Toledo J.B.
        • López-Azcárate J.
        • Garcia-Garcia D.
        • et al.
        High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease.
        Neurobiol Dis. 2014; 64: 60-65https://doi.org/10.1016/J.NBD.2013.12.005
        • Little S.
        • Tan H.
        • Anzak A.
        • Pogosyan A.
        • Kühn A.
        • Brown P.
        Bilateral functional connectivity of the basal ganglia in patients with Parkinson’s disease and its modulation by dopaminergic treatment.
        PLoS One. 2013; 8e82762https://doi.org/10.1371/JOURNAL.PONE.0082762
        • Alavi M.
        • Dostrovsky J.O.
        • Hodaie M.
        • Lozano A.M.
        • Hutchison W.D.
        Spatial extent of β oscillatory activity in and between the subthalamic nucleus and substantia nigra pars reticulata of Parkinson’s disease patients.
        Exp Neurol. 2013; 245: 60-71https://doi.org/10.1016/J.EXPNEUROL.2012.09.021
        • Choi J.W.
        • Malekmohammadi M.
        • Sparks H.
        • et al.
        Altered pallidocortical low-beta oscillations during self-initiated movements in Parkinson disease.
        Front Syst Neurosci. 2020; 14: 54https://doi.org/10.3389/FNSYS.2020.00054
        • Oswal A.
        • Beudel M.
        • Zrinzo L.
        • et al.
        Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease.
        Brain. 2016; 139: 1482-1496https://doi.org/10.1093/BRAIN/AWW048
        • van Wijk B.C.M.
        • Beudel M.
        • Jha A.
        • et al.
        Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson’s disease.
        Clin Neurophysiol. 2016; 127: 2010-2019https://doi.org/10.1016/J.CLINPH.2016.01.015
        • Kühn A.A.
        • Kupsch A.
        • Schneider G.H.
        • Brown P.
        Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease.
        Eur J Neurosci. 2006; 23: 1956-1960https://doi.org/10.1111/J.1460-9568.2006.04717.X
        • Tinkhauser G.
        • Pogosyan A.
        • Little S.
        • et al.
        The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease.
        Brain. 2017; 140: 1053-1067https://doi.org/10.1093/BRAIN/AWX010
        • Torrecillos F.
        • Tinkhauser G.
        • Fischer P.
        • et al.
        Modulation of beta bursts in the subthalamic nucleus predicts motor performance.
        J Neurosci. 2018; 38: 8905-8917https://doi.org/10.1523/JNEUROSCI.1314-18.2018
        • Swan C.B.
        • Schulte D.J.
        • Brocker D.T.
        • Grill W.M.
        Beta frequency oscillations in the subthalamic nucleus are not sufficient for the development of symptoms of parkinsonian bradykinesia/akinesia in rats.
        eNeuro. 2019; 6https://doi.org/10.1523/ENEURO.0089-19.2019
        • Hutchison W.D.
        • Dostrovsky J.O.
        • Walters J.R.
        • et al.
        Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings.
        J Neurosci. 2004; 24: 9240-9243https://doi.org/10.1523/JNEUROSCI.3366-04.2004
        • Litvak V.
        • Eusebio A.
        • Jha A.
        • et al.
        Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings.
        J Neurosci. 2012; 32: 10541-10553https://doi.org/10.1523/JNEUROSCI.0767-12.2012
        • Schnitzler A.
        • Gross J.
        Normal and pathological oscillatory communication in the brain.
        Nat Rev Neurosci. 2005; 6: 285-296https://doi.org/10.1038/nrn1650
        • de Hemptinne C.
        • Swann N.C.
        • Ostrem J.L.
        • et al.
        Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease.
        Nat Neurosci. 2015; 18: 779-786https://doi.org/10.1038/nn.3997
        • Swann N.C.
        • de Hemptinne C.
        • Aron A.R.
        • Ostrem J.L.
        • Knight R.T.
        • Starr P.A.
        Elevated synchrony in Parkinson disease detected with electroencephalography.
        Ann Neurol. 2015; 78: 742-750https://doi.org/10.1002/ana.24507
        • Cole S.R.
        • van der Meij R.
        • Peterson E.J.
        • de Hemptinne C.
        • Starr P.A.
        • Voytek B.
        Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease.
        J Neurosci. 2017; 37: 4830-4840https://doi.org/10.1523/JNEUROSCI.2208-16.2017
        • van Wijk B.C.M.
        Is broadband gamma activity pathologically synchronized to the beta rhythm in Parkinson’s disease?.
        J Neurosci. 2017; 37: 9347-9349https://doi.org/10.1523/JNEUROSCI.2023-17.2017
        • Singh A.
        • Richardson S.P.
        • Narayanan N.
        • Cavanagh J.F.
        Mid-frontal theta activity is diminished during cognitive control in Parkinson’s disease.
        Neuropsychologia. 2018; 117: 113-122https://doi.org/10.1016/j.neuropsychologia.2018.05.020
        • Singh A.
        • Cole R.C.
        • Espinoza A.I.
        • Brown D.
        • Cavanagh J.F.
        • Narayanan N.S.
        Frontal theta and beta oscillations during lower-limb movement in Parkinson’s disease.
        Clin Neurophysiol. 2020; 131: 694-702https://doi.org/10.1016/j.clinph.2019.12.399
        • Meissner S.N.
        • Krause V.
        • Südmeyer M.
        • Hartmann C.J.
        • Pollok B.
        The significance of brain oscillations in motor sequence learning: insights from Parkinson’s disease.
        NeuroImage Clin. 2018; 20: 448-457https://doi.org/10.1016/j.nicl.2018.08.009
        • Groiss S.J.
        • Elben S.
        • Reck C.
        • Voges J.
        • Wojtecki L.
        • Schnitzler A.
        Local field potential oscillations of the globus pallidus in Huntington’s disease.
        Mov Disord. 2011; 26: 2577-2578https://doi.org/10.1002/mds.23914
        • Zhu G.
        • Geng X.
        • Tan Z.
        • et al.
        Characteristics of globus pallidus internus local field potentials in hyperkinetic disease.
        Front Neurol. 2018; 9: 934https://doi.org/10.3389/fneur.2018.00934
        • Marceglia S.
        • Servello D.
        • Foffani G.
        • et al.
        Thalamic single-unit and local field potential activity in Tourette syndrome.
        Mov Disord. 2010; 25: 300-308https://doi.org/10.1002/mds.22982
        • Neumann W.J.
        • Turner R.S.
        • Blankertz B.
        • Mitchell T.
        • Kühn A.A.
        • Richardson R.M.
        Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders.
        Neurotherapeutics. 2019; 16: 105-118https://doi.org/10.1007/s13311-018-00705-0
        • Umeda T.
        • Isa T.
        • Nishimura Y.
        The somatosensory cortex receives information about motor output.
        Sci Adv. 2019; 5eaaw5388https://doi.org/10.1126/sciadv.aaw5388
        • Conte A.
        • Leodori G.
        • Ferrazzano G.
        • et al.
        Somatosensory temporal discrimination threshold in Parkinson’s disease parallels disease severity and duration.
        Clin Neurophysiol. 2016; 127: 2985-2989https://doi.org/10.1016/j.clinph.2016.06.026
        • Nelson A.J.
        • Hoque T.
        • Gunraj C.
        • Chen R.
        Altered somatosensory processing in Parkinson’s disease and modulation by dopaminergic medications.
        Parkinsonism Relat Disord. 2018; 53: 76-81https://doi.org/10.1016/j.parkreldis.2018.05.002
        • Foki T.
        • Pirker W.
        • Geißler A.
        • et al.
        Finger dexterity deficits in Parkinson’s disease and somatosensory cortical dysfunction.
        Parkinsonism Relat Disord. 2015; 21: 259-265https://doi.org/10.1016/j.parkreldis.2014.12.025
        • Elben S.
        • Trenado C.
        • Vesper J.
        • Schnitzler A.
        • Wojtecki L.
        Human subthalamic oscillatory dynamics following somatosensory stimulation.
        Clin Neurophysiol. 2018; 129: 79-88https://doi.org/10.1016/j.clinph.2017.10.015
        • Aman J.E.
        • Abosch A.
        • Bebler M.
        • Lu C.H.
        • Konczak J.
        Subthalamic nucleus deep brain stimulation improves somatosensory function in Parkinson’s disease.
        Mov Disord. 2014; 29: 221-228https://doi.org/10.1002/mds.25731
        • Devos D.
        • Labyt E.
        • Cassim F.
        • et al.
        Subthalamic stimulation influences postmovement cortical somatosensory processing in Parkinson’s disease.
        Eur J Neurosci. 2003; 18: 1884-1888https://doi.org/10.1046/j.1460-9568.2003.02925.x
        • Little S.
        • Brown P.
        What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?.
        Ann N Y Acad Sci. 2012; 1265: 9-24https://doi.org/10.1111/j.1749-6632.2012.06650.x
        • Little S.
        • Tripoliti E.
        • Beudel M.
        • et al.
        Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting.
        J Neurol Neurosurg Psychiatry. 2016; 87: 1388-1389https://doi.org/10.1136/jnnp-2016-313518
        • Velisar A.
        • Syrkin-Nikolau J.
        • Blumenfeld Z.
        • et al.
        Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients.
        Brain Stimul. 2019; 12: 868-876https://doi.org/10.1016/j.brs.2019.02.020
        • Little S.
        • Pogosyan A.
        • Neal S.
        • et al.
        Adaptive deep brain stimulation in advanced Parkinson disease.
        Ann Neurol. 2013; 74: 449-457https://doi.org/10.1002/ana.23951
        • Rosa M.
        • Arlotti M.
        • Ardolino G.
        • et al.
        Adaptive deep brain stimulation in a freely moving Parkinsonian patient.
        Mov Disord. 2015; 30: 1003-1005https://doi.org/10.1002/mds.26241
        • Swann N.C.
        • de Hemptinne C.
        • Miocinovic S.
        • et al.
        Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease.
        J Neurosci. 2016; 36: 6445-6458https://doi.org/10.1523/JNEUROSCI.1128-16.2016
        • Swann N.C.
        • de Hemptinne C.
        • Thompson M.C.
        • et al.
        Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing.
        J Neural Eng. 2018; 15046006https://doi.org/10.1088/1741-2552/aabc9b
        • Lalo E.
        • Thobois S.
        • Sharott A.
        • et al.
        Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease.
        J Neurosci. 2008; 28: 3008-3016https://doi.org/10.1523/JNEUROSCI.5295-07.2008
        • Williams D.
        • Tijssen M.
        • Van Bruggen G.
        • et al.
        Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans.
        Brain. 2002; 125: 1558-1569https://doi.org/10.1093/brain/awf156
        • Abdul Nabi Ali A.
        • Alam M.
        • Klein S.C.
        • et al.
        Predictive accuracy of CNN for cortical oscillatory activity in an acute rat model of parkinsonism.
        Neural Netw. 2022; 146: 334-340https://doi.org/10.1016/J.NEUNET.2021.11.025
        • Temperli P.
        • Ghika J.
        • Villemure J.G.
        • Burkhard P.R.
        • Bogousslavsky J.
        • Vingerhoets F.J.
        How do parkinsonian signs return after discontinuation of subthalamic DBS?.
        Neurology. 2003; 60: 78-81https://doi.org/10.1212/wnl.60.1.78
        • Cooper S.E.
        • Driesslein K.G.
        • Noecker A.M.
        • McIntyre C.C.
        • Machado A.M.
        • Butson C.R.
        Anatomical targets associated with abrupt versus gradual washout of subthalamic deep brain stimulation effects on bradykinesia.
        PLoS One. 2014; 9e99663https://doi.org/10.1371/journal.pone.0099663
        • Johnson M.D.
        • Miocinovic S.
        • McIntyre C.C.
        • Vitek J.L.
        Mechanisms and targets of deep brain stimulation in movement disorders.
        Neurotherapeutics. 2008; 5: 294-308https://doi.org/10.1016/j.nurt.2008.01.010
        • Dorval A.D.
        • Grill W.M.
        Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism.
        J Neurophysiol. 2014; 111: 1949-1959https://doi.org/10.1152/jn.00713.2013

      Comments