Advertisement
Review Articles|Articles in Press

Deep Brain Stimulation of the Medial Forebrain Bundle for Treatment-Resistant Depression: A Systematic Review Focused on the Long-Term Antidepressive Effect

      Abstract

      Objective

      Major depression affects millions of people worldwide and has important social and economic consequences. Since up to 30% of patients do not respond to several lines of antidepressive drugs, deep brain stimulation (DBS) has been evaluated for the management of treatment-resistant depression (TRD). The superolateral branch of the medial forebrain bundle (slMFB) appears as a “hypothesis-driven target” because of its role in the reward-seeking system, which is dysfunctional in depression. Although initial results of slMFB-DBS from open-label studies were promising and characterized by a rapid clinical response, long-term outcomes of neurostimulation for TRD deserve particular attention. Therefore, we performed a systematic review focused on the long-term outcome of slMFB-DBS.

      Materials and Methods

      A literature search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify all studies reporting changes in depression scores after one-year follow-up and beyond. Patient, disease, surgical, and outcome data were extracted for statistical analysis. The Montgomery-Åsberg Depression Rating Scale (ΔMADRS) was used as the clinical outcome, defined as percentage reduction from baseline to follow-up evaluation. Responders’ and remitters’ rates were also calculated.

      Results

      From 56 studies screened for review, six studies comprising 34 patients met the inclusion criteria and were analyzed. After one year of active stimulation, ΔMADRS was 60.7% ± 4%; responders’ and remitters’ rates were 83.8% and 61.5%, respectively. At the last follow-up, four to five years after the implantation, ΔMADRS reached 74.7% ± 4.6%. The most common side effects were stimulation related and reversible with parameter adjustments.

      Conclusions

      slMFB-DBS appears to have a strong antidepressive effect that increases over the years. Nevertheless, to date, the overall number of patients receiving implantations is limited, and the slMFB-DBS surgical technique seems to have an important impact on the clinical outcome. Further multicentric studies in a larger population are needed to confirm slMFB-DBS clinical outcomes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sussman M.
        • O’Sullivan A.K.
        • Shah A.
        • Olfson M.
        • Menzin J.
        Economic burden of treatment-resistant depression on the U.S. health care system.
        J Manag Care Spec Pharm. 2019; 25: 823-835
        • Rush A.J.
        • Trivedi M.H.
        • Wisniewski S.R.
        • et al.
        Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR∗D report.
        Am J Psychiatry. 2006; 163: 1905-1917
        • Bari A.A.
        • Mikell C.B.
        • Abosch A.
        • et al.
        Charting the road forward in psychiatric neurosurgery: proceedings of the 2016 American Society for Stereotactic and Functional Neurosurgery workshop on neuromodulation for psychiatric disorders.
        J Neurol Neurosurg Psychiatry. 2018; 89: 886-896https://doi.org/10.1136/jnnp-2017-317082
        • Wong J.K.
        • Deuschl G.
        • Wolke R.
        • et al.
        Proceedings of the Ninth Annual Deep Brain Stimulation Think Tank: advances in cutting edge technologies, artificial intelligence, neuromodulation, neuroethics, pain, interventional psychiatry, epilepsy, and traumatic brain injury.
        Front Hum Neurosci. 2022; 16813387https://doi.org/10.3389/fnhum.2022.813387
        • Lozano A.M.
        • Mayberg H.S.
        • Giacobbe P.
        • Hamani C.
        • Craddock R.C.
        • Kennedy S.H.
        Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression.
        Biol Psychiatry. 2008; 64: 461-467https://doi.org/10.1016/j.biopsych.2008.05.034
        • Bewernick B.H.
        • Hurlemann R.
        • Matusch A.
        • et al.
        Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression.
        Biol Psychiatry. 2010; 67: 110-116https://doi.org/10.1016/j.biopsych.2009.09.013
        • Malone D.A.
        • Dougherty D.D.
        • Rezai A.R.
        • et al.
        Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression.
        Biol Psychiatry. 2009; 65: 267-275https://doi.org/10.1016/j.biopsych.2008.08.029
        • Holtzheimer P.E.
        • Kelley M.E.
        • Gross R.E.
        • et al.
        Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression.
        Arch Gen Psychiatry. 2012; 69: 150-158https://doi.org/10.1001/archgenpsychiatry.2011.1456
        • Bewernick B.H.
        • Kayser S.
        • Sturm V.
        • Schlaepfer T.E.
        Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy.
        Neuropsychopharmacology. 2012; 37: 1975-1985https://doi.org/10.1038/npp.2012.44
        • Dougherty D.D.
        • Rezai A.R.
        • Carpenter L.L.
        • et al.
        A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression.
        Biol Psychiatry. 2015; 78: 240-248https://doi.org/10.1016/j.biopsych.2014.11.023
        • Holtzheimer P.E.
        • Husain M.M.
        • Lisanby S.H.
        • et al.
        Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial.
        Lancet Psychiatry. 2017; 4: 839-849https://doi.org/10.1016/S2215-0366(17)30371-1
        • Dandekar M.P.
        • Fenoy A.J.
        • Carvalho A.F.
        • Soares J.C.
        • Quevedo J.
        Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications.
        Mol Psychiatry. 2018; 23: 1094-1112https://doi.org/10.1038/mp.2018.2
        • Fenoy A.J.
        • Schulz P.
        • Selvaraj S.
        • et al.
        Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression.
        J Affect Disord. 2016; 203: 143-151https://doi.org/10.1016/j.jad.2016.05.064
        • Döbrössy M.D.
        • Ramanathan C.
        • Ashouri Vajari D.
        • Tong Y.
        • Schlaepfer T.
        • Coenen V.A.
        Neuromodulation in Psychiatric disorders: experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: focus on the medial forebrain bundle.
        Eur J Neurosci. 2021; 53: 89-113https://doi.org/10.1111/ejn.14975
        • Toenders Y.J.
        • Schmaal L.
        • Nawijn L.
        • et al.
        The association between clinical and biological characteristics of depression and structural brain alterations.
        J Affect Disord. 2022; 312: 268-274https://doi.org/10.1016/j.jad.2022.06.056
        • Schlaepfer T.E.
        • Bewernick B.H.
        • Kayser S.
        • Hurlemann R.
        • Coenen V.A.
        Deep brain stimulation of the human reward system for major depression - rationale, outcomes and outlook.
        Neuropsychopharmacology. 2014; 39: 1303-1314https://doi.org/10.1038/npp.2014.28
        • Schlaepfer T.E.
        • Bewernick B.H.
        • Kayser S.
        • Mädler B.
        • Coenen V.A.
        Rapid effects of deep brain stimulation for treatment-resistant major depression.
        Biol Psychiatry. 2013; 73: 1204-1212https://doi.org/10.1016/j.biopsych.2013.01.034
        • Coenen V.A.
        • Bewernick B.H.
        • Kayser S.
        • et al.
        Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial.
        Neuropsychopharmacology. 2019; 44: 1224-1232https://doi.org/10.1038/s41386-019-0369-9
        • Mahlknecht P.
        • Foltynie T.
        • Limousin P.
        • Poewe W.
        How does deep brain stimulation change the course of Parkinson’s disease?.
        Mov Disord. 2022; 37: 1581-1592https://doi.org/10.1002/mds.29052
        • Dallapiazza R.F.
        • Lee D.J.
        • de Vloo P.
        • et al.
        Outcomes from stereotactic surgery for essential tremor.
        J Neurol Neurosurg Psychiatry. 2019; 90: 474-482https://doi.org/10.1136/jnnp-2018-318240
        • Fasano A.
        • Helmich R.C.
        Tremor habituation to deep brain stimulation: underlying mechanisms and solutions.
        Mov Disord. 2019; 34: 1761-1773https://doi.org/10.1002/mds.27821
        • Tisch S.
        Deep brain stimulation in dystonia: factors contributing to variability in outcome in short and long term follow-up.
        Curr Opin Neurol. 2022; 35: 510-517https://doi.org/10.1097/WCO.0000000000001072
        • Johnson K.A.
        • Worbe Y.
        • Foote K.D.
        • Butson C.R.
        • Gunduz A.
        • Okun M.S.
        Tourette syndrome: clinical features, pathophysiology, and treatment.
        Lancet Neurol. 2023; 22: 147-158https://doi.org/10.1016/s1474-4422(22)00303-9
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372: n71https://doi.org/10.1136/bmj.n71
        • Page M.J.
        • Moher D.
        • Bossuyt P.M.
        • et al.
        PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews.
        BMJ. 2021; 372: n160https://doi.org/10.1136/bmj.n160
        • Lo C.K.L.
        • Mertz D.
        • Loeb M.
        Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments.
        BMC Med Res Methodol. 2014; 14: 45https://doi.org/10.1186/1471-2288-14-45
        • Sterne J.A.C.
        • Savović J.
        • Page M.J.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; 366: l4898https://doi.org/10.1136/bmj.l4898
        • Montgomery S.A.
        • Asberg M.
        A new depression scale designed to be sensitive to change.
        Br J Psychiatry. 1979; 134: 382-389https://doi.org/10.1192/bjp.134.4.382
        • Zimmerman M.
        • Posternak M.A.
        • Chelminski I.
        Defining remission on the Montgomery-Asberg Depression Rating Scale.
        J Clin Psychiatry. 2004; 65: 163-168https://doi.org/10.4088/JCP.v65n0204
        • Fenoy A.J.
        • Schulz P.E.
        • Sanches M.
        • et al.
        Deep brain stimulation of the “medial forebrain bundle”: sustained efficacy of antidepressant effect over years.
        Mol Psychiatry. 2022; 27: 2546-2553https://doi.org/10.1038/s41380-022-01504-y
        • Fenoy A.J.
        • Schulz P.E.
        • Selvaraj S.
        • et al.
        A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression.
        Transl Psychiatry. 2018; 8: 111https://doi.org/10.1038/s41398-018-0160-4
        • Douglas G.A.
        • David M.
        • Trevor N.B.
        • Martin J.G.
        Statistics With Confidence. Proportions and Their Differences.
        2nd ed. BMJ Books, 2000
        • Bewernick B.H.
        • Kayser S.
        • Gippert S.M.
        • Switala C.
        • Coenen V.A.
        • Schlaepfer T.E.
        Deep brain stimulation to the medial forebrain bundle for depression- long-term outcomes and a novel data analysis strategy.
        Brain Stimul. 2017; 10: 664-671https://doi.org/10.1016/j.brs.2017.01.581
        • Kilian H.M.
        • Meyer D.M.
        • Bewernick B.H.
        • Spanier S.
        • Coenen V.A.
        • Schlaepfer T.E.
        Discontinuation of superolateral medial forebrain bundle deep brain stimulation for treatment-resistant depression leads to critical relapse.
        Biol Psychiatry. 2019; 85: e23-e24https://doi.org/10.1016/j.biopsych.2018.07.025
        • Bewernick B.H.
        • Kilian H.M.
        • Schmidt K.
        • et al.
        Deep brain stimulation of the supero-lateral branch of the medial forebrain bundle does not lead to changes in personality in patients suffering from severe depression.
        Psychol Med. 2018; 48: 2684-2692https://doi.org/10.1017/S0033291718000296
        • Coenen V.A.
        • Schlaepfer T.E.
        • Maedler B.
        • Panksepp J.
        Cross-species affective functions of the medial forebrain bundle-Implications for the treatment of affective pain and depression in humans.
        Neurosci Biobehav Rev. 2011; 35: 1971-1981https://doi.org/10.1016/j.neubiorev.2010.12.009
        • Northoff G.
        • Panksepp J.
        The trans-species concept of self and the subcortical-cortical midline system.
        Trends Cogn Sci. 2008; 12: 259-264https://doi.org/10.1016/j.tics.2008.04.007
        • le Gros Clark W.E.
        The topography and homologies of the hypothalamic nuclei in man.
        J Anat. 1936; 70: 203
        • Coenen V.A.
        • Schumacher L.V.
        • Kaller C.
        • et al.
        The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions.
        NeuroImage Clin. 2018; 18: 770-783https://doi.org/10.1016/j.nicl.2018.03.019
        • Coenen V.A.
        • Sajonz B.
        • Reisert M.
        • et al.
        Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.
        NeuroImage Clin. 2018; 20: 580-593https://doi.org/10.1016/j.nicl.2018.08.020
        • Coenen V.A.
        • Döbrössy M.D.
        • Teo S.J.
        • et al.
        Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI.
        Brain Struct Funct. 2022; 227: 23-47https://doi.org/10.1007/s00429-021-02373-x
        • Coenen V.A.
        • Panksepp J.
        • Hurwitz T.A.
        • Urbach H.
        • Mädler B.
        Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression.
        J Neuropsychiatry Clin Neurosci. 2012; 24: 223-236
        • Horn A.
        • Kühn A.A.
        • Merkl A.
        • Shih L.
        • Alterman R.
        • Fox M.
        Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space.
        Neuroimage. 2017; 150: 395-404https://doi.org/10.1016/j.neuroimage.2017.02.004
        • Coenen V.A.
        • Schlaepfer T.E.
        • Sajonz B.E.A.
        • Reinacher P.C.
        • Döbrössy M.D.
        • Reisert M.
        “The Heart Asks Pleasure First”-conceptualizing psychiatric diseases as MAINTENANCE network dysfunctions through insights from slMFB DBS in depression and obsessive-compulsive disorder.
        Brain Sci. 2022; 12: 438https://doi.org/10.3390/brainsci12040438
        • Alcaro A.
        • Panksepp J.
        The SEEKING mind: primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression.
        Neurosci Biobehav Rev. 2011; 35: 1805-1820https://doi.org/10.1016/j.neubiorev.2011.03.002
        • Ikemoto S.
        Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.
        Neurosci Biobehav Rev. 2010; 35: 129-150https://doi.org/10.1016/j.neubiorev.2010.02.001
        • Settell M.L.
        • Testini P.
        • Cho S.
        • et al.
        Functional circuitry effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation.
        Front Neurosci. 2017; 11: 104https://doi.org/10.3389/fnins.2017.00104
        • Thiele S.
        • Furlanetti L.
        • Pfeiffer L.M.
        • Coenen V.A.
        • Döbrössy M.D.
        The effects of bilateral, continuous, and chronic deep brain stimulation of the medial forebrain bundle in a rodent model of depression.
        Exp Neurol. 2018; 303: 153-161https://doi.org/10.1016/j.expneurol.2018.02.002
        • Thiele S.
        • Sörensen A.
        • Weis J.
        • et al.
        Deep brain stimulation of the medial forebrain bundle in a rodent model of depression: exploring dopaminergic mechanisms with raclopride and micro-PET.
        Stereotact Funct Neurosurg. 2020; 98: 8-20https://doi.org/10.1159/000504860
        • Coenen V.A.
        • Honey C.R.
        • Hurwitz T.
        • et al.
        Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease.
        Neurosurgery. 2009; 64 ([discussion: 1114–1115]. https://doi.org/10.1227/01.NEU.0000345631.54446.06): 1106-1114
        • Coenen V.A.
        • Schlaepfer T.E.
        • Goll P.
        • et al.
        The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder.
        CNS Spectr. 2017; 22: 282-289https://doi.org/10.1017/S1092852916000286
        • Helbing C.
        • Brocka M.
        • Scherf T.
        • Lippert M.T.
        • Angenstein F.
        The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.
        J Cereb Blood Flow Metab. 2016; 36: 2177-2193https://doi.org/10.1177/0271678X15615535
        • Lozano A.M.
        • Lipsman N.
        Probing and regulating dysfunctional circuits using deep brain stimulation.
        Neuron. 2013; 77: 406-424https://doi.org/10.1016/j.neuron.2013.01.020
        • Giacobbe P.
        • Mayberg H.S.
        • Lozano A.M.
        Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation.
        Exp Neurol. 2009; 219: 44-52https://doi.org/10.1016/j.expneurol.2009.04.028
        • Coenen V.A.
        • Schlaepfer T.E.
        • Sajonz B.
        • et al.
        Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders.
        NeuroImage Clin. 2020; 25102165https://doi.org/10.1016/j.nicl.2020.102165
        • Riva-Posse P.
        • Choi K.S.
        • Holtzheimer P.E.
        • et al.
        A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression.
        Mol Psychiatry. 2018; 23: 843-849https://doi.org/10.1038/mp.2017.59
        • Petersen M.V.
        • Lund T.E.
        • Sunde N.
        • et al.
        Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation.
        J Neurosurg. 2017; 126: 1657-1668https://doi.org/10.3171/2016.4.JNS1624
        • Tsolaki E.
        • Downes A.
        • Speier W.
        • Elias W.J.
        • Pouratian N.
        The potential value of probabilistic tractography-based for MR-guided focused ultrasound thalamotomy for essential tremor.
        NeuroImage Clin. 2018; 17: 1019-1027https://doi.org/10.1016/j.nicl.2017.12.018
        • Fenoy A.J.
        • Schiess M.C.
        Comparison of tractography-assisted to atlas-based targeting for deep brain stimulation in essential tremor.
        Mov Disord. 2018; 33: 1895-1901https://doi.org/10.1002/mds.27463
        • Coenen V.A.
        • Schlaepfer T.E.
        • Reinacher P.C.
        • Mast H.
        • Urbach H.
        • Reisert M.
        Machine learning-aided personalized DTI tractographic planning for deep brain stimulation of the superolateral medial forebrain bundle using HAMLET.
        Acta Neurochir (Wien). 2019; 161: 1559-1569https://doi.org/10.1007/s00701-019-03947-9
        • Tuch D.S.
        • Wedeen V.J.
        • Dale A.M.
        • George J.S.
        • Belliveau J.W.
        Conductivity tensor mapping of the human brain using diffusion tensor MRI.
        Proc Natl Acad Sci U S A. 2001; 98: 11697-11701
        • Davidson B.
        • Giacobbe P.
        • Mithani K.
        • et al.
        Lack of clinical response to deep brain stimulation of the medial forebrain bundle in depression.
        Brain Stimul. 2020; 13: 1268-1270https://doi.org/10.1016/j.brs.2020.06.010
        • Fenoy A.J.
        • Quevedo J.
        • Soares J.C.
        Deep brain stimulation of the “medial forebrain bundle”: a strategy to modulate the reward system and manage treatment-resistant depression.
        Mol Psychiatry. 2022; 27: 574-592https://doi.org/10.1038/s41380-021-01100-6
        • Patel D.M.
        • Walker H.C.
        • Brooks R.
        • Omar N.
        • Ditty B.
        • Guthrie B.L.
        Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases.
        Neurosurgery. 2015; 11: 190-199https://doi.org/10.1227/NEU.0000000000000659
        • Zrinzo L.
        • Foltynie T.
        • Limousin P.
        • Hariz M.I.
        Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review.
        J Neurosurg. 2012; 116: 84-94https://doi.org/10.3171/2011.8.JNS101407
        • Feldmann L.K.
        • Neumann W.J.
        • Faust K.
        • Schneider G.H.
        • Kühn A.A.
        Risk of infection after deep brain stimulation surgery with externalization and local-field potential recordings: twelve-year experience from a single institution.
        Stereotact Funct Neurosurg. 2021; 99: 512-520https://doi.org/10.1159/000516150
        • Wu Y.
        • Mo J.
        • Sui L.
        • et al.
        Deep brain stimulation in treatment-resistant depression: a systematic review and meta-analysis on efficacy and safety.
        Front Neurosci. 2021; 15655412https://doi.org/10.3389/fnins.2021.655412
        • Bergfeld I.O.
        • Mantione M.
        • Figee M.
        • Schuurman P.R.
        • Lok A.
        • Denys D.
        Treatment-resistant depression and suicidality.
        J Affect Disord. 2018; 235: 362-367https://doi.org/10.1016/j.jad.2018.04.016
        • Jones B.D.M.
        • Razza L.B.
        • Weissman C.R.
        • et al.
        Magnitude of the placebo response across treatment modalities used for treatment-resistant depression in adults: a systematic review and meta-analysis.
        JAMA Netw Open. 2021; 4e2125531https://doi.org/10.1001/jamanetworkopen.2021.25531
        • Jakovljevic M.
        The placebo-nocebo response: controversies and challenges from clinical and research perspective.
        Eur Neuropsychopharmacol. 2014; 24: 333-341https://doi.org/10.1016/j.euroneuro.2013.11.014
        • Licht R.W.
        • Danish University Antidepressant Group
        Is it possible to evaluate true prophylactic efficacy of antidepressants in severely ill patients with recurrent depression? Lessons from a placebo-controlled trial. The fifth trial of the Danish University Antidepressant Group (DUAG-5).
        J Affect Disord. 2013; 148: 286-290https://doi.org/10.1016/j.jad.2012.12.009
        • Schatzberg A.F.
        • Kraemer H.C.
        Use of placebo control groups in evaluating efficacy of treatment of unipolar major depression.
        Biol Psych. 2000; 47: 736-744
        • Tavel M.E.
        The placebo effect: the Good, the Bad, and the Ugly.
        Am J Med. 2014; 127: 484-488https://doi.org/10.1016/j.amjmed.2014.02.002
        • Riva-Posse P.
        • Crowell A.L.
        • Wright K.
        • et al.
        Rapid antidepressant effects of deep brain stimulation and their relation to surgical protocol.
        Biol Psychiatry. 2020; 88: e37-e39https://doi.org/10.1016/j.biopsych.2020.03.017
        • Bergfeld I.O.
        • Mantione M.
        • Hoogendoorn M.L.C.
        • et al.
        Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial.
        JAMA Psychiatry. 2016; 73: 456-464https://doi.org/10.1001/jamapsychiatry.2016.0152
        • Naudet F.
        • Millet B.
        • Reymann J.M.
        • Falissard B.
        Improving study design for antidepressant effectiveness assessment.
        Int J Methods Psychiatr Res. 2013; 22: 217-231https://doi.org/10.1002/mpr.1391
        • Figee M.
        • Riva-Posse P.
        • Choi K.S.
        • Bederson L.
        • Mayberg H.S.
        • Kopell B.H.
        Deep brain stimulation for depression.
        Neurotherapeutics. 2022; 19: 1229-1245https://doi.org/10.1007/s13311-022-01270-3
        • Tykocki T.
        • Nauman P.
        • Koziara H.
        • Mandat T.
        Microlesion effect as a predictor of the effectiveness of subthalamic deep brain stimulation for Parkinson’s disease.
        Stereotact Funct Neurosurg. 2013; 91: 12-17https://doi.org/10.1159/000342161
        • Sheth S.A.
        • Bijanki K.R.
        • Metzger B.
        • et al.
        Deep brain stimulation for depression informed by intracranial recordings.
        Biol Psychiatry. 2022; 92: 246-251https://doi.org/10.1016/j.biopsych.2021.11.007
        • Scangos K.W.
        • Khambhati A.N.
        • Daly P.M.
        • et al.
        Closed-loop neuromodulation in an individual with treatment-resistant depression.
        Nat Med. 2021; 27: 1696-1700https://doi.org/10.1038/s41591-021-01480-w
        • Clark D.L.
        • MacMaster F.P.
        • Brown E.C.
        • Kiss Z.H.T.
        • Ramasubbu R.
        Rostral anterior cingulate glutamate predicts response to subcallosal deep brain stimulation for resistant depression.
        J Affect Disord. 2020; 266: 90-94https://doi.org/10.1016/j.jad.2020.01.058
        • Brown E.C.
        • Clark D.L.
        • Forkert N.D.
        • Molnar C.P.
        • Kiss Z.H.T.
        • Ramasubbu R.
        Metabolic activity in subcallosal cingulate predicts response to deep brain stimulation for depression.
        Neuropsychopharmacology. 2020; 45: 1681-1688https://doi.org/10.1038/s41386-020-0745-5
        • Tiruvadi V.R.
        • Veerakumar A.
        • Smart O.
        • et al.
        Decoding depression during subcallosal cingulate deep brain stimulation.
        Preprint. Posted online July 29, 2022; (bioRxiv. https://doi.org/10.1101/2022.07.27.501778)
        • Bouthour W.
        • Mégevand P.
        • Donoghue J.
        • Lüscher C.
        • Birbaumer N.
        • Krack P.
        Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond.
        Nat Rev Neurol. 2019; 15: 343-352https://doi.org/10.1038/s41582-019-0166-4
        • Sisterson N.D.
        • Kokkinos V.
        • Urban A.
        • Li N.
        • Richardson R.M.
        Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series.
        J Neurol Neurosurg Psychiatry. 2022; 93: 491-498https://doi.org/10.1136/jnnp-2021-327512
        • Nierenberg A.A.
        Long-term management of chronic depression.
        J Clin Psychiatry. 2001; 62: 17-21
        • Vergunst F.K.
        • Fekadu A.
        • Wooderson S.C.
        • et al.
        Longitudinal course of symptom severity and fluctuation in patients with treatment-resistant unipolar and bipolar depression.
        Psychiatry Res. 2013; 207: 143-149https://doi.org/10.1016/j.psychres.2013.03.022

      Comments