Advertisement
Review Articles|Articles in Press

Biophysical Principles and Computational Modeling of Deep Brain Stimulation

      Abstract

      Background

      Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community.

      Objective

      In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS.

      Results

      Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response.

      Conclusion

      This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ellis T.M.
        • Foote K.D.
        • Fernandez H.H.
        • et al.
        Reoperation for suboptimal outcomes after deep brain stimulation surgery.
        Neurosurgery. 2008; 63 ([discussion: 760]): 754-760https://doi.org/10.1227/01.NEU.0000325492.58799.35
        • Butson C.R.
        • Cooper S.E.
        • Henderson J.M.
        • Wolgamuth B.
        • McIntyre C.C.
        Probabilistic analysis of activation volumes generated during deep brain stimulation.
        NeuroImage. 2011; 54: 2096-2104https://doi.org/10.1016/j.neuroimage.2010.10.059
        • Slopsema J.P.
        • Peña E.
        • Patriat R.
        • et al.
        Clinical deep brain stimulation strategies for orientation-selective pathway activation.
        J Neural Eng. 2018; 15056029https://doi.org/10.1088/1741-2552/aad978
        • Tass P.A.
        A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations.
        Biol Cybern. 2003; 89: 81-88https://doi.org/10.1007/s00422-003-0425-7
        • Weerasinghe G.
        • Duchet B.
        • Cagnan H.
        • Brown P.
        • Bick C.
        • Bogacz R.
        Predicting the effects of deep brain stimulation using a reduced coupled oscillator model.
        PLoS Comput Biol. 2019; 15e1006575https://doi.org/10.1371/journal.pcbi.1006575
        • Popovych O.V.
        • Tass P.A.
        Adaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study.
        Sci Rep. 2019; 910585https://doi.org/10.1038/s41598-019-47036-4
        • Adamchic I.
        • Hauptmann C.
        • Barnikol U.B.
        • et al.
        Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study.
        Mov Disord. 2014; 29: 1679-1684https://doi.org/10.1002/mds.25923
        • Cagnan H.
        • Pedrosa D.
        • Little S.
        • et al.
        Stimulating at the right time: phase-specific deep brain stimulation.
        Brain. 2017; 140: 132-145https://doi.org/10.1093/brain/aww286
        • Brocker D.T.
        • Swan B.D.
        • So R.Q.
        • Turner D.A.
        • Gross R.E.
        • Grill W.M.
        Optimized temporal pattern of brain stimulation designed by computational evolution.
        Sci Transl Med. 2017; 9eaah3532https://doi.org/10.1126/scitranslmed.aah3532
        • Kumsa D.W.
        • Bhadra N.
        • Hudak E.M.
        • Kelley S.C.
        • Untereker D.F.
        • Mortimer J.T.
        Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on the i(V e) profile.
        J Neural Eng. 2016; 13052001https://doi.org/10.1088/1741-2560/13/5/052001
        • Mcintyre C.C.
        • Foutz T.J.
        Computational modeling of deep brain stimulation.
        Handb Clin Neurol. 2013; 116: 55-61https://doi.org/10.1016/B978-0-444-53497-2.00005-X
        • Ding S.L.
        • Royall J.J.
        • Sunkin S.M.
        • et al.
        Comprehensive cellular-resolution atlas of the adult human brain.
        J Comp Neurol. 2016; 524: 3127-3481https://doi.org/10.1002/cne.24080
        • Barthó P.
        • Slézia A.
        • Varga V.
        • et al.
        Cortical control of zona incerta.
        J Neurosci. 2007; 27: 1670-1681https://doi.org/10.1523/JNEUROSCI.3768-06.2007
        • Bergman H.
        The Hidden Life of the Basal Ganglia: At the Base of Brain and Mind.
        The MIT Press, 2021
        • Abbott L.F.
        Lapicque’s introduction of the integrate-and-fire model neuron (1907).
        Brain Res Bull. 1999; 50: 303-304https://doi.org/10.1016/s0361-9230(99)00161-6
        • Hodgkin A.L.
        • Huxley A.F.
        A quantitative description of membrane current and its application to conduction and excitation in nerve.
        J Physiol. 1952; 117: 500-544https://doi.org/10.1113/jphysiol.1952.sp004764
        • Rall W.
        Branching dendritic trees and motoneuron membrane resistivity.
        Exp Neurol. 1959; 1: 491-527https://doi.org/10.1016/0014-4886(59)90046-9
        • McNeal D.R.
        Analysis of a model for excitation of myelinated nerve.
        IEEE Trans Biomed Eng. 1976; 23: 329-337https://doi.org/10.1109/TBME.1976.324593
        • Butson C.R.
        • Cooper S.E.
        • Henderson J.M.
        • McIntyre C.C.
        Patient-specific analysis of the volume of tissue activated during deep brain stimulation.
        NeuroImage. 2007; 34: 661-670https://doi.org/10.1016/j.neuroimage.2006.09.034
        • McIntyre C.C.
        • Grill W.M.
        • Sherman D.L.
        • Thakor N.V.
        Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
        J Neurophysiol. 2004; 91: 1457-1469https://doi.org/10.1152/jn.00989.2003
        • Howell B.
        • Isbaine F.
        • Willie J.T.
        • et al.
        Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation.
        Brain Stimul. 2021; 14: 549-563https://doi.org/10.1016/j.brs.2021.03.009
        • Benabid A.L.
        • Pollak P.
        • Louveau A.
        • Henry S.
        • de Rougemont J.
        Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease.
        Appl Neurophysiol. 1987; 50: 344-346https://doi.org/10.1159/000100803
        • Pool J.L.
        Psychosurgery in older people.
        J Am Geriatr Soc. 1954; 2: 456-466https://doi.org/10.1111/j.1532-5415.1954.tb02138.x
        • Premarket Approval (PMA)
        U.S. Food and Drug Administration.
        • Lapicque L.
        Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization.
        Journal de physiologie et de pathologie générale. 1907; 9: 620-635
        • McIntyre C.C.
        • Mori S.
        • Sherman D.L.
        • Thakor N.V.
        • Vitek J.L.
        Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus.
        Clin Neurophysiol. 2004; 115: 589-595https://doi.org/10.1016/j.clinph.2003.10.033
        • McIntyre C.C.
        • Miocinovic S.
        • Butson C.R.
        Computational analysis of deep brain stimulation.
        Expert Rev Med Devices. 2007; 4: 615-622https://doi.org/10.1586/17434440.4.5.615
        • Gunalan K.
        • Howell B.
        • McIntyre C.C.
        Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation.
        NeuroImage. 2018; 172: 263-277https://doi.org/10.1016/j.neuroimage.2018.01.015
        • Warman E.N.
        • Grill W.M.
        • Durand D.
        Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds.
        IEEE Trans Biomed Eng. 1992; 39: 1244-1254https://doi.org/10.1109/10.184700
        • Peterson E.J.
        • Izad O.
        • Tyler D.J.
        Predicting myelinated axon activation using spatial characteristics of the extracellular field.
        J Neural Eng. 2011; 8046030https://doi.org/10.1088/1741-2560/8/4/046030
        • Howell B.
        • Gunalan K.
        • McIntyre C.C.
        A driving-force predictor for estimating pathway activation in patient-specific models of deep brain stimulation.
        Neuromodulation. 2019; 22: 403-415https://doi.org/10.1111/ner.12929
        • Rattay F.
        Analysis of models for external stimulation of axons.
        IEEE Trans Biomed Eng. 1986; 33: 974-977https://doi.org/10.1109/TBME.1986.325670
        • Zierhofer C.M.
        Analysis of a linear model for electrical stimulation of axons--critical remarks on the “activating function concept”.
        IEEE Trans Biomed Eng. 2001; 48: 173-184https://doi.org/10.1109/10.909638
        • Moffitt M.A.
        • McIntyre C.C.
        • Grill W.M.
        Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models.
        IEEE Trans Biomed Eng. 2004; 51: 229-236https://doi.org/10.1109/TBME.2003.820382
        • Butson C.R.
        • McIntyre C.C.
        Role of electrode design on the volume of tissue activated during deep brain stimulation.
        J Neural Eng. 2006; 3: 1-8https://doi.org/10.1088/1741-2560/3/1/001
        • Astrom M.
        • Diczfalusy E.
        • Martens H.
        • Wardell K.
        Relationship between neural activation and electric field distribution during deep brain stimulation.
        IEEE Trans Biomed Eng. 2015; 62: 664-672https://doi.org/10.1109/TBME.2014.2363494
        • Duffley G.
        • Anderson D.N.
        • Vorwerk J.
        • Dorval A.D.
        • Butson C.R.
        Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated.
        J Neural Eng. 2019; 16066024https://doi.org/10.1088/1741-2552/ab3c95
        • Chaturvedi A.
        • Luján J.L.
        • McIntyre C.C.
        Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation.
        J Neural Eng. 2013; 10056023https://doi.org/10.1088/1741-2560/10/5/056023
        • Chaturvedi A.
        • Butson C.R.
        • Lempka S.F.
        • Cooper S.E.
        • McIntyre C.C.
        Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions.
        Brain Stimul. 2010; 3: 65-67https://doi.org/10.1016/j.brs.2010.01.003
        • Butson C.R.
        • McIntyre C.C.
        The use of stimulation field models for deep brain stimulation programming.
        Brain Stimul. 2015; 8: 976-978https://doi.org/10.1016/j.brs.2015.06.005
        • Sweet J.A.
        • Pace J.
        • Girgis F.
        • Miller J.P.
        Computational modeling and neuroimaging techniques for targeting during deep brain stimulation.
        Front Neuroanat. 2016; 10: 71https://doi.org/10.3389/fnana.2016.00071
        • Rubin J.E.
        • Terman D.
        High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model.
        J Comput Neurosci. 2004; 16: 211-235https://doi.org/10.1023/B:JCNS.0000025686.47117.67
        • Miocinovic S.
        • Parent M.
        • Butson C.R.
        • et al.
        Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.
        J Neurophysiol. 2006; 96: 1569-1580https://doi.org/10.1152/jn.00305.2006
        • Krauss J.K.
        • Lipsman N.
        • Aziz T.
        • et al.
        Technology of deep brain stimulation: current status and future directions.
        Nat Rev Neurol. 2021; 17: 75-87https://doi.org/10.1038/s41582-020-00426-z
        • Koeglsperger T.
        • Palleis C.
        • Hell F.
        • Mehrkens J.H.
        • Bötzel K.
        Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies.
        Front Neurol. 2019; 10: 410https://doi.org/10.3389/fneur.2019.00410
        • DiLorenzo D.J.
        • Jankovic J.
        • Simpson R.K.
        • Takei H.
        • Powell S.Z.
        Neurohistopathological findings at the electrode-tissue interface in long-term deep brain stimulation: systematic literature review, case report, and assessment of stimulation threshold safety.
        Neuromodulation. 2014; 17 ([discussion: 418]): 405-418https://doi.org/10.1111/ner.12192
        • McCann H.
        • Pisano G.
        • Beltrachini L.
        Variation in reported human head tissue electrical conductivity values.
        Brain Topogr. 2019; 32: 825-858https://doi.org/10.1007/s10548-019-00710-2
        • Huang S.Y.
        • Tian Q.
        • Fan Q.
        • et al.
        High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain.
        Brain Struct Funct. 2020; 225: 1277-1291https://doi.org/10.1007/s00429-019-01961-2
        • Rose T.L.
        • Robblee L.S.
        Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses.
        IEEE Trans Biomed Eng. 1990; 37: 1118-1120https://doi.org/10.1109/10.61038
        • Brocker D.T.
        • Grill W.M.
        Principles of electrical stimulation of neural tissue.
        Handb Clin Neurol. 2013; 116: 3-18https://doi.org/10.1016/B978-0-444-53497-2.00001-2
        • McIntyre C.C.
        • Grill W.M.
        Finite element analysis of the current-density and electric field generated by metal microelectrodes.
        Ann Biomed Eng. 2001; 29: 227-235https://doi.org/10.1114/1.1352640
        • Fattahi P.
        • Yang G.
        • Kim G.
        • Abidian M.R.
        A review of organic and inorganic biomaterials for neural interfaces.
        Adv Mater. 2014; 26: 1846-1885https://doi.org/10.1002/adma.201304496
        • Butson C.R.
        • McIntyre C.C.
        Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
        Clin Neurophysiol. 2005; 116: 2490-2500https://doi.org/10.1016/j.clinph.2005.06.023
        • Miocinovic S.
        • Lempka S.F.
        • Russo G.S.
        • et al.
        Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
        Exp Neurol. 2009; 216: 166-176https://doi.org/10.1016/j.expneurol.2008.11.024
        • Bronstein J.M.
        • Tagliati M.
        • McIntyre C.
        • et al.
        The rationale driving the evolution of deep brain stimulation to constant-current devices.
        Neuromodulation. 2015; 18 ([discussion: 88–89]): 85-88https://doi.org/10.1111/ner.12227
        • Anderson D.N.
        • Dorval A.D.
        • Rolston J.D.
        • Pulst S.M.
        • Anderson C.J.
        Computational investigation of the impact of deep brain stimulation contact size and shape on neural selectivity.
        J Neural Eng. 2021; 18https://doi.org/10.1088/1741-2552/abeeaa
        • Howell B.
        • Huynh B.
        • Grill W.M.
        Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
        J Neural Eng. 2015; 12046030https://doi.org/10.1088/1741-2560/12/4/046030
        • Grill W.M.
        • Wei X.F.
        High efficiency electrodes for deep brain stimulation.
        Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009: 3298-3301https://doi.org/10.1109/IEMBS.2009.5333774
        • Howell B.
        • Grill W.M.
        Evaluation of high-perimeter electrode designs for deep brain stimulation.
        J Neural Eng. 2014; 11046026https://doi.org/10.1088/1741-2560/11/4/046026
        • Butson C.R.
        • Maks C.B.
        • McIntyre C.C.
        Sources and effects of electrode impedance during deep brain stimulation.
        Clin Neurophysiol. 2006; 117: 447-454https://doi.org/10.1016/j.clinph.2005.10.007
        • Butson C.R.
        • McIntyre C.C.
        Current steering to control the volume of tissue activated during deep brain stimulation.
        Brain Stimul. 2008; 1: 7-15https://doi.org/10.1016/j.brs.2007.08.004
        • Chaturvedi A.
        • Foutz T.J.
        • McIntyre C.C.
        Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region.
        Brain Stimul. 2012; 5: 369-377https://doi.org/10.1016/j.brs.2011.05.002
        • Martens H.C.F.
        • Toader E.
        • Decré M.M.J.
        • et al.
        Spatial steering of deep brain stimulation volumes using a novel lead design.
        Clin Neurophysiol. 2011; 122: 558-566https://doi.org/10.1016/j.clinph.2010.07.026
        • Anderson C.J.
        • Anderson D.N.
        • Pulst S.M.
        • Butson C.R.
        • Dorval A.D.
        Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes.
        Brain Stimul. 2020; 13: 1040-1050https://doi.org/10.1016/j.brs.2020.03.017
        • Slopsema J.P.
        • Canna A.
        • Uchenik M.
        • et al.
        Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T.
        NeuroImage. 2021; 224117357https://doi.org/10.1016/j.neuroimage.2020.117357
        • Dembek T.A.
        • Reker P.
        • Visser-Vandewalle V.
        • et al.
        Directional DBS increases side-effect thresholds-a prospective, double-blind trial.
        Mov Disord. 2017; 32: 1380-1388https://doi.org/10.1002/mds.27093
        • Cagnan H.
        • Denison T.
        • McIntyre C.
        • Brown P.
        Emerging technologies for improved deep brain stimulation.
        Nat Biotechnol. 2019; 37: 1024-1033https://doi.org/10.1038/s41587-019-0244-6
        • Dayal V.
        • Limousin P.
        • Foltynie T.
        Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters.
        J Parkinsons Dis. 2017; 7: 235-245https://doi.org/10.3233/JPD-171077
        • Moro E.
        • Esselink R.J.A.
        • Xie J.
        • Hommel M.
        • Benabid A.L.
        • Pollak P.
        The impact on Parkinson’s disease of electrical parameter settings in STN stimulation.
        Neurology. 2002; 59: 706-713https://doi.org/10.1212/wnl.59.5.706
        • Grill W.M.
        • Snyder A.N.
        • Miocinovic S.
        Deep brain stimulation creates an informational lesion of the stimulated nucleus.
        Neuroreport. 2004; 15: 1137-1140https://doi.org/10.1097/00001756-200405190-00011
        • Anderson R.W.
        • Farokhniaee A.
        • Gunalan K.
        • Howell B.
        • McIntyre C.C.
        Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation.
        Brain Stimul. 2018; 11: 1140-1150https://doi.org/10.1016/j.brs.2018.05.008
        • Hahn P.J.
        • McIntyre C.C.
        Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.
        J Comput Neurosci. 2010; 28: 425-441https://doi.org/10.1007/s10827-010-0225-8
        • Holt A.B.
        • Netoff T.I.
        Origins and suppression of oscillations in a computational model of Parkinson’s disease.
        J Comput Neurosci. 2014; 37: 505-521https://doi.org/10.1007/s10827-014-0523-7
        • Lempka S.F.
        • Johnson M.D.
        • Miocinovic S.
        • Vitek J.L.
        • McIntyre C.C.
        Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
        Clin Neurophysiol. 2010; 121: 2128-2133https://doi.org/10.1016/j.clinph.2010.04.026
        • Volkmann J.
        • Moro E.
        • Pahwa R.
        Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease.
        Mov Disord. 2006; 21: S284-S289https://doi.org/10.1002/mds.20961
        • Wong J.
        • Gunduz A.
        • Shute J.
        • et al.
        Longitudinal follow-up of impedance drift in deep brain stimulation cases.
        Tremor Other Hyperkinet Mov (N Y). 2018; 8: 542https://doi.org/10.7916/D8M62XTC
        • Vitek J.L.
        • Jain R.
        • Chen L.
        • et al.
        Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study.
        Lancet Neurol. 2020; 19: 491-501https://doi.org/10.1016/S1474-4422(20)30108-3
        • McIntyre C.C.
        • Grill W.M.
        Excitation of central nervous system neurons by nonuniform electric fields.
        Biophys J. 1999; 76: 878-888https://doi.org/10.1016/S0006-3495(99)77251-6
        • Mohan U.R.
        • Watrous A.J.
        • Miller J.F.
        • et al.
        The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity.
        Brain Stimul. 2020; 13: 1183-1195https://doi.org/10.1016/j.brs.2020.05.009
        • Sotiropoulos S.N.
        • Steinmetz P.N.
        Assessing the direct effects of deep brain stimulation using embedded axon models.
        J Neural Eng. 2007; 4: 107-119https://doi.org/10.1088/1741-2560/4/2/011
        • Foutz T.J.
        • Ackermann Jr., D.M.
        • Kilgore K.L.
        • McIntyre C.C.
        Energy efficient neural stimulation: coupling circuit design and membrane biophysics.
        PLoS One. 2012; 7e51901https://doi.org/10.1371/journal.pone.0051901
        • Moldovan A.S.
        • Hartmann C.J.
        • Trenado C.
        • et al.
        Less is more - Pulse width dependent therapeutic window in deep brain stimulation for essential tremor.
        Brain Stimul. 2018; 11: 1132-1139https://doi.org/10.1016/j.brs.2018.04.019
        • Bouthour W.
        • Wegrzyk J.
        • Momjian S.
        • et al.
        Short pulse width in subthalamic stimulation in Parkinson’s disease: a randomized, double-blind study.
        Mov Disord. 2018; 33: 169-173https://doi.org/10.1002/mds.27265
        • McIntyre C.C.
        • Grill W.M.
        Selective microstimulation of central nervous system neurons.
        Ann Biomed Eng. 2000; 28: 219-233https://doi.org/10.1114/1.262
        • Anderson D.N.
        • Duffley G.
        • Vorwerk J.
        • Dorval A.D.
        • Butson C.R.
        Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation.
        J Neural Eng. 2019; 16016026https://doi.org/10.1088/1741-2552/aae590
        • BeMent S.L.
        • Ranck J.B.
        A quantitative study of electrical stimulation of central myelinated fibers.
        Exp Neurol. 1969; 24: 147-170https://doi.org/10.1016/0014-4886(69)90012-0
        • Kirsch A.D.
        • Hassin-Baer S.
        • Matthies C.
        • Volkmann J.
        • Steigerwald F.
        Anodic versus cathodic neurostimulation of the subthalamic nucleus: a randomized-controlled study of acute clinical effects.
        Parkinsonism Relat Disord. 2018; 55: 61-67https://doi.org/10.1016/j.parkreldis.2018.05.015
        • De Jesus S.
        • Almeida L.
        • Shahgholi L.
        • et al.
        Square biphasic pulse deep brain stimulation for essential tremor: the BiP tremor study.
        Parkinsonism Relat Disord. 2018; 46: 41-46https://doi.org/10.1016/j.parkreldis.2017.10.015
        • Lilly J.C.
        • Hughes J.R.
        • Alvord E.C.
        • Galkin T.W.
        Brief, noninjurious electric waveform for stimulation of the brain.
        Science. 1955; 121: 468-469https://doi.org/10.1126/science.121.3144.468
        • Merrill D.R.
        • Bikson M.
        • Jefferys J.G.R.
        Electrical stimulation of excitable tissue: design of efficacious and safe protocols.
        J Neurosci Methods. 2005; 141: 171-198https://doi.org/10.1016/j.jneumeth.2004.10.020
        • Piallat B.
        • Chabardès S.
        • Devergnas A.
        • et al.
        Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation.
        Neurosurgery. 2009; 64 ([discussion: 162–163]. https://dx.doi.org/10.1227/01.NEU.0000336331.88559.CF): 156-162
        • Stieger K.C.
        • Eles J.R.
        • Ludwig K.A.
        • Kozai T.D.Y.
        In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice.
        J Neurosci Res. 2020; 98: 2072-2095https://doi.org/10.1002/jnr.24676
        • Hofmann L.
        • Ebert M.
        • Tass P.A.
        • Hauptmann C.
        Modified pulse shapes for effective neural stimulation.
        Front Neuroeng. 2011; 4: 9https://doi.org/10.3389/fneng.2011.00009
        • Foutz T.J.
        • McIntyre C.C.
        Evaluation of novel stimulus waveforms for deep brain stimulation.
        J Neural Eng. 2010; 7066008https://doi.org/10.1088/1741-2560/7/6/066008
        • Prodanov D.
        • Delbeke J.
        Mechanical and biological interactions of implants with the brain and their impact on implant design.
        Front Neurosci. 2016; 10: 11https://doi.org/10.3389/fnins.2016.00011
        • Evers J.
        • Lowery M.
        The active electrode in the living brain: the response of the brain parenchyma to chronically implanted deep brain stimulation electrodes.
        Oper Neurosurg (Hagerstown). 2021; 20: 131-140https://doi.org/10.1093/ons/opaa326
        • Saxena T.
        • Karumbaiah L.
        • Gaupp E.A.
        • et al.
        The impact of chronic blood–brain barrier breach on intracortical electrode function.
        Biomaterials. 2013; 34: 4703-4713https://doi.org/10.1016/j.biomaterials.2013.03.007
        • Yousif N.
        • Bayford R.
        • Liu X.
        The influence of reactivity of the electrode–brain interface on the crossing electric current in therapeutic deep brain stimulation.
        Neuroscience. 2008; 156: 597-606https://doi.org/10.1016/j.neuroscience.2008.07.051
        • Ineichen C.
        • Shepherd N.R.
        • Sürücü O.
        Understanding the effects and adverse reactions of deep brain stimulation: is it time for a paradigm shift toward a focus on heterogenous biophysical tissue properties instead of electrode design only?.
        Front Hum Neurosci. 2018; 12: 468https://doi.org/10.3389/fnhum.2018.00468
        • Latikka J.
        • Kuurne T.
        • Eskola H.
        Conductivity of living intracranial tissues.
        Phys Med Biol. 2001; 46: 1611-1616https://doi.org/10.1088/0031-9155/46/6/302
        • Komlosh M.E.
        • Horkay F.
        • Freidlin R.Z.
        • Nevo U.
        • Assaf Y.
        • Basser P.J.
        Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double Pulsed Gradient Spin Echo MR.
        J Magn Reson. 2007; 189: 38-45https://doi.org/10.1016/j.jmr.2007.07.003
        • Nicholson P.W.
        Specific impedance of cerebral white matter.
        Exp Neurol. 1965; 13: 386-401https://doi.org/10.1016/0014-4886(65)90126-3
        • Howell B.
        • McIntyre C.C.
        Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
        J Neural Eng. 2016; 13036023https://doi.org/10.1088/1741-2560/13/3/036023
        • Shimony J.S.
        • McKinstry R.C.
        • Akbudak E.
        • et al.
        Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis.
        Radiology. 1999; 212: 770-784https://doi.org/10.1148/radiology.212.3.r99au51770
        • Tuch D.S.
        • Wedeen V.J.
        • Dale A.M.
        • George J.S.
        • Belliveau J.W.
        Conductivity tensor mapping of the human brain using diffusion tensor MRI.
        Proc Natl Acad Sci U S A. 2001; 98: 11697-11701https://doi.org/10.1073/pnas.171473898
        • Grill W.M.
        Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties.
        IEEE Trans Biomed Eng. 1999; 46: 918-928https://doi.org/10.1109/10.775401
        • Lee M.B.
        • Kim H.J.
        • Kwon O.I.
        Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.
        Biomed Eng Online. 2021; 20: 29https://doi.org/10.1186/s12938-021-00869-5
        • Yu Y.
        • Wang X.
        • Wang Q.
        • Wang Q.
        A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease.
        Appl Math Mech. 2020; 41: 1747-1768https://doi.org/10.1007/s10483-020-2689-9
        • van Albada S.J.
        • Robinson P.A.
        Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states.
        J Theor Biol. 2009; 257: 642-663https://doi.org/10.1016/j.jtbi.2008.12.018
        • Kuramoto Y.
        Chemical Oscillations, Waves, and Turbulence.
        19. Springer, 1984https://doi.org/10.1007/978-3-642-69689-3
        • Little S.
        • Bestmann S.
        Computational neurostimulation for Parkinson’s disease.
        Prog Brain Res. 2015; 222: 163-190https://doi.org/10.1016/bs.pbr.2015.09.002
        • Mina F.
        • Benquet P.
        • Pasnicu A.
        • Biraben A.
        • Wendling F.
        Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects.
        Front Comput Neurosci. 2013; 7: 94https://doi.org/10.3389/fncom.2013.00094
        • Giannakakis E.
        • Hutchings F.
        • Papasavvas C.A.
        • et al.
        Computational modelling of the long-term effects of brain stimulation on the local and global structural connectivity of epileptic patients.
        PLoS One. 2020; 15e0221380https://doi.org/10.1371/journal.pone.0221380
        • Ramirez-Mahaluf J.P.
        • Roxin A.
        • Mayberg H.S.
        • Compte A.
        A computational model of major depression: the role of glutamate dysfunction on cingulo-frontal network dynamics.
        Cereb Cortex. 2017; 27: 660-679https://doi.org/10.1093/cercor/bhv249
        • Albin R.L.
        • Young A.B.
        • Penney J.B.
        The functional anatomy of basal ganglia disorders.
        Trends Neurosci. 1989; 12: 366-375https://doi.org/10.1016/0166-2236(89)90074-X
        • Montgomery E.B.
        • Baker K.B.
        Mechanisms of deep brain stimulation and future technical developments.
        Neurol Res. 2000; 22: 259-266https://doi.org/10.1080/01616412.2000.11740668
        • Humphries M.D.
        • Gurney K.
        Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.
        Eur J Neurosci. 2012; 36: 2240-2251https://doi.org/10.1111/j.1460-9568.2012.08085.x
        • Santaniello S.
        • McCarthy M.M.
        • Montgomery E.B.
        • Gale J.T.
        • Kopell N.
        • Sarma S.V.
        Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement.
        Proc Natl Acad Sci USA. 2015; 112: E586-E595https://doi.org/10.1073/pnas.1406549111
        • Marceglia S.
        • Guidetti M.
        • Harmsen I.E.
        • et al.
        Deep brain stimulation: is it time to change gears by closing the loop?.
        J Neural Eng. 2021; 18https://doi.org/10.1088/1741-2552/ac3267
        • Feng X.J.
        • Greenwald B.
        • Rabitz H.
        • Shea-Brown E.
        • Kosut R.
        Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model.
        J Neural Eng. 2007; 4: L14-L21https://doi.org/10.1088/1741-2560/4/2/L03
        • Su F.
        • Kumaravelu K.
        • Wang J.
        • Grill W.M.
        Model-based evaluation of closed-loop deep brain stimulation controller to adapt to dynamic changes in reference signal.
        Front Neurosci. 2019; 13: 956https://doi.org/10.3389/fnins.2019.00956
        • Fleming J.E.
        • Dunn E.
        • Lowery M.M.
        Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease.
        Front Neurosci. 2020; 14: 166https://doi.org/10.3389/fnins.2020.00166
        • Zhu Y.
        • Wang J.
        • Li H.
        • Liu C.
        • Grill W.M.
        Adaptive parameter modulation of deep brain stimulation based on improved supervisory algorithm.
        Front Neurosci. 2021; 15750806https://doi.org/10.3389/fnins.2021.750806
        • Popovych O.V.
        • Lysyansky B.
        • Rosenblum M.
        • Pikovsky A.
        • Tass P.A.
        Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation.
        PLoS One. 2017; 12e0173363https://doi.org/10.1371/journal.pone.0173363
        • Popovych O.V.
        • Lysyansky B.
        • Tass P.A.
        Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases.
        Sci Rep. 2017; 7: 1033https://doi.org/10.1038/s41598-017-01067-x
        • Popovych O.V.
        • Tass P.A.
        Multisite delayed feedback for electrical brain stimulation.
        Front Physiol. 2018; 9: 46https://doi.org/10.3389/fphys.2018.00046
        • Wong J.K.
        • Middlebrooks E.H.
        • Grewal S.S.
        • Almeida L.
        • Hess C.W.
        • Okun M.S.
        A comprehensive review of brain connectomics and imaging to improve deep brain stimulation outcomes.
        Mov Disord. 2020; 35: 741-751https://doi.org/10.1002/mds.28045
        • Frey J.
        • Cagle J.
        • Johnson K.A.
        • et al.
        Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology and novel approaches.
        Front Neurol. 2022; 13825178https://doi.org/10.3389/fneur.2022.825178
        • Akram H.
        • Sotiropoulos S.N.
        • Jbabdi S.
        • et al.
        Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease.
        NeuroImage. 2017; 158: 332-345https://doi.org/10.1016/j.neuroimage.2017.07.012
        • Horn A.
        • Reich M.
        • Vorwerk J.
        • et al.
        Connectivity Predicts deep brain stimulation outcome in Parkinson disease.
        Ann Neurol. 2017; 82: 67-78https://doi.org/10.1002/ana.24974
        • Middlebrooks E.H.
        • Tuna I.S.
        • Almeida L.
        • et al.
        Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus.
        NeuroImage Clin. 2018; 20: 1266-1273https://doi.org/10.1016/j.nicl.2018.10.009
        • Noecker A.M.
        • Choi K.S.
        • Riva-Posse P.
        • Gross R.E.
        • Mayberg H.S.
        • McIntyre C.C.
        StimVision software: examples and applications in subcallosal cingulate deep brain stimulation for depression.
        Neuromodulation. 2018; 21: 191-196https://doi.org/10.1111/ner.12625
        • Johnson K.A.
        • Duffley G.
        • Anderson D.N.
        • et al.
        Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome.
        Brain. 2020; 143: 2607-2623https://doi.org/10.1093/brain/awaa188
        • Middlebrooks E.H.
        • Grewal S.S.
        • Stead M.
        • Lundstrom B.N.
        • Worrell G.A.
        • Van Gompel J.J.
        Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes.
        Neurosurg Focus. 2018; 45: E7https://doi.org/10.3171/2018.5.FOCUS18151
        • Akram H.
        • Miller S.
        • Lagrata S.
        • et al.
        Optimal deep brain stimulation site and target connectivity for chronic cluster headache.
        Neurology. 2017; 89: 2083-2091https://doi.org/10.1212/WNL.0000000000004646
        • Horn A.
        • Reich M.M.
        • Ewert S.
        • et al.
        Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia.
        Proc Natl Acad Sci USA. 2022; 119e2114985119https://doi.org/10.1073/pnas.2114985119
        • Ríos A.S.
        • Oxenford S.
        • Neudorfer C.
        • et al.
        Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease.
        Nat Commun. 2022; 13: 7707https://doi.org/10.1038/s41467-022-34510-3
        • Riva-Posse P.
        • Choi K.S.
        • Holtzheimer P.E.
        • et al.
        A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression.
        Mol Psychiatry. 2018; 23: 843-849https://doi.org/10.1038/mp.2017.59
        • Barcia J.A.
        • Avecillas-Chasín J.M.
        • Nombela C.
        • et al.
        Personalized striatal targets for deep brain stimulation in obsessive-compulsive disorder.
        Brain Stimul. 2019; 12: 724-734https://doi.org/10.1016/j.brs.2018.12.226
        • Coenen V.A.
        • Schlaepfer T.E.
        • Varkuti B.
        • et al.
        Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining.
        Brain Stimul. 2019; 12: 1345-1348https://doi.org/10.1016/j.brs.2019.07.014
        • Wang Q.
        • Akram H.
        • Muthuraman M.
        • et al.
        Normative vs. patient-specific brain connectivity in deep brain stimulation.
        NeuroImage. 2021; 224117307https://doi.org/10.1016/j.neuroimage.2020.117307
        • Miocinovic S.
        • Noecker A.M.
        • Maks C.B.
        • Butson C.R.
        • McIntyre C.C.
        Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system.
        Acta Neurochir Suppl. 2007; 97: 561-567https://doi.org/10.1007/978-3-211-33081-4_65
        • Frankemolle A.M.M.
        • Wu J.
        • Noecker A.M.
        • et al.
        Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming.
        Brain. 2010; 133: 746-761https://doi.org/10.1093/brain/awp315
        • Butson C.R.
        • Tamm G.
        • Jain S.
        • Fogal T.
        • Krüger J.
        Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters.
        IEEE Trans Vis Comput Graph. 2013; 19: 108-117https://doi.org/10.1109/TVCG.2012.92
        • Pourfar M.H.
        • Mogilner A.Y.
        • Farris S.
        • et al.
        Model-based deep brain stimulation programming for Parkinson’s disease: the GUIDE pilot study.
        Stereotact Funct Neurosurg. 2015; 93: 231-239https://doi.org/10.1159/000375172
        • Lange F.
        • Steigerwald F.
        • Malzacher T.
        • et al.
        Reduced programming time and strong symptom control even in chronic course through imaging-based DBS programming.
        Front Neurol. 2021; 12785529https://doi.org/10.3389/fneur.2021.785529
        • Waldthaler J.
        • Bopp M.
        • Kühn N.
        • et al.
        Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson’s disease.
        Brain Stimul. 2021; 14: 1109-1117https://doi.org/10.1016/j.brs.2021.07.064
        • Reich M.M.
        • Horn A.
        • Lange F.
        • et al.
        Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study.
        Brain. 2019; 142: 1386-1398https://doi.org/10.1093/brain/awz046
        • Johansson J.D.
        • Zsigmond P.
        Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3.
        Biomed Phys Eng Express. 2021; 7https://doi.org/10.1088/2057-1976/ac0dcd
        • Pavese N.
        • Tai Y.F.
        • Yousif N.
        • Nandi D.
        • Bain P.G.
        Traditional trial and error versus neuroanatomic 3-dimensional image software-assisted deep brain stimulation programming in patients with Parkinson disease.
        World Neurosurg. 2020; 134: e98-e102https://doi.org/10.1016/j.wneu.2019.09.106
        • Johansson J.D.
        • Alonso F.
        • Wardell K.
        Patient-specific simulations of deep brain stimulation electric field with aid of in-house software ELMA.
        Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 5212-5216https://doi.org/10.1109/EMBC.2019.8856307
        • Naesström M.
        • Johansson J.
        • Hariz M.
        • Bodlund O.
        • Wårdell K.
        • Blomstedt P.
        Distribution of electric field in patients with obsessive compulsive disorder treated with deep brain stimulation of the bed nucleus of stria terminalis.
        Acta Neurochir (Wien). 2022; 164: 193-202https://doi.org/10.1007/s00701-021-04991-0
        • Butenko K.
        • Bahls C.
        • Schröder M.
        • Köhling R.
        • van Rienen U.
        OSS-DBS: open-source simulation platform for deep brain stimulation with a comprehensive automated modeling.
        PLoS Comput Biol. 2020; 16e1008023https://doi.org/10.1371/journal.pcbi.1008023
        • Horn A.
        • Li N.
        • Dembek T.A.
        • et al.
        Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging.
        NeuroImage. 2019; 184: 293-316https://doi.org/10.1016/j.neuroimage.2018.08.068
        • Kuncel A.M.
        • Cooper S.E.
        • Grill W.M.
        A method to estimate the spatial extent of activation in thalamic deep brain stimulation.
        Clin Neurophysiol. 2008; 119: 2148-2158https://doi.org/10.1016/j.clinph.2008.02.025
        • Mädler B.
        • Coenen V.A.
        Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue.
        AJNR Am J Neuroradiol. 2012; 33: 1072-1080https://doi.org/10.3174/ajnr.A2906
        • Dembek T.A.
        • Barbe M.T.
        • Åström M.
        • et al.
        Probabilistic mapping of deep brain stimulation effects in essential tremor.
        NeuroImage Clin. 2017; 13: 164-173https://doi.org/10.1016/j.nicl.2016.11.019
        • Nordenström S.
        • Petermann K.
        • Debove I.
        • et al.
        Programming of subthalamic nucleus deep brain stimulation for Parkinson’s disease with sweet spot-guided parameter suggestions.
        Front Hum Neurosci. 2022; 16925283https://doi.org/10.3389/fnhum.2022.925283
        • Wong J.K.
        • Patel B.
        • Middlebrooks E.H.
        • et al.
        Connectomic analysis of unilateral dual-lead thalamic deep brain stimulation for treatment of multiple sclerosis tremor.
        Brain Commun. 2022; 4: fcac063https://doi.org/10.1093/braincomms/fcac063
        • Oxenford S.
        • Roediger J.
        • Neudorfer C.
        • et al.
        Lead-OR: a multimodal platform for deep brain stimulation surgery.
        eLife. 2022; 11e72929https://doi.org/10.7554/eLife.72929
        • Husch A.
        • Petersen M.V.
        • Gemmar P.
        • Goncalves J.
        • Hertel F.
        PaCER - a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation.
        Neuroimage Clin. 2017; 17: 80-89https://doi.org/10.1016/j.nicl.2017.10.004
        • Lauro P.M.
        • Vanegas-Arroyave N.
        • Huang L.
        • et al.
        DBSproc: an open source process for DBS electrode localization and tractographic analysis.
        Hum Brain Mapp. 2016; 37: 422-433https://doi.org/10.1002/hbm.23039
        • Vanegas-Arroyave N.
        • Lauro P.M.
        • Huang L.
        • et al.
        Tractography patterns of subthalamic nucleus deep brain stimulation.
        Brain. 2016; 139: 1200-1210https://doi.org/10.1093/brain/aww020
        • Duffley G.
        • Lutz B.J.
        • Szabo A.
        • et al.
        Home health management of Parkinson disease deep brain stimulation: a randomized clinical trial.
        JAMA Neurol. 2021; 78: 972-981https://doi.org/10.1001/jamaneurol.2021.1910
        • Vorwerk J.
        • McCann D.
        • Krüger J.
        • Butson C.R.
        Interactive computation and visualization of deep brain stimulation effects using Duality.
        Comput Methods Biomech Biomed Eng Imaging Vis. 2020; 8: 3-14https://doi.org/10.1080/21681163.2018.1484817
        • Baniasadi M.
        • Proverbio D.
        • Gonçalves J.
        • Hertel F.
        • Husch A.
        FastField: an open-source toolbox for efficient approximation of deep brain stimulation electric fields.
        NeuroImage. 2020; 223117330https://doi.org/10.1016/j.neuroimage.2020.117330
        • Hirt L.
        • Grassia F.
        • Feuerstein J.
        • Thompson J.A.
        • Ojemann S.
        • Kern D.S.
        Deep brain stimulation of the ventral intermediate nucleus of the thalamus in writer’s cramp: a case report.
        Tremor Other Hyperkinet Mov (N Y). 2021; 11: 46https://doi.org/10.5334/tohm.645
        • Petry-Schmelzer J.N.
        • Dembek T.A.
        • Steffen J.K.
        • et al.
        Selecting the most effective DBS contact in essential tremor patients based on individual tractography.
        Brain Sci. 2020; 10: 1015https://doi.org/10.3390/brainsci10121015
        • Fernandes Arroteia I.
        • Husch A.
        • Baniasadi M.
        • Hertel F.
        Impressive weight gain after deep brain stimulation of nucleus accumbens in treatment-resistant bulimic anorexia nervosa.
        BMJ Case Rep. 2020; 13e239316https://doi.org/10.1136/bcr-2020-239316
        • Noecker A.M.
        • Frankemolle-Gilbert A.M.
        • Howell B.
        • et al.
        StimVision v2: examples and applications in subthalamic deep brain stimulation for Parkinson’s disease.
        Neuromodulation. 2021; 24: 248-258https://doi.org/10.1111/ner.13350
        • Shah A.
        • Vogel D.
        • Alonso F.
        • et al.
        Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery.
        Med Biol Eng Comput. 2020; 58: 771-784https://doi.org/10.1007/s11517-020-02130-y
        • Anderson D.N.
        • Osting B.
        • Vorwerk J.
        • Dorval A.D.
        • Butson C.R.
        Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.
        J Neural Eng. 2018; 15026005https://doi.org/10.1088/1741-2552/aaa14b

      Comments