Abstract
Background
Objective
Results
Conclusion
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe toReferences
- Reoperation for suboptimal outcomes after deep brain stimulation surgery.Neurosurgery. 2008; 63 ([discussion: 760]): 754-760https://doi.org/10.1227/01.NEU.0000325492.58799.35
- Probabilistic analysis of activation volumes generated during deep brain stimulation.NeuroImage. 2011; 54: 2096-2104https://doi.org/10.1016/j.neuroimage.2010.10.059
- Clinical deep brain stimulation strategies for orientation-selective pathway activation.J Neural Eng. 2018; 15056029https://doi.org/10.1088/1741-2552/aad978
- A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations.Biol Cybern. 2003; 89: 81-88https://doi.org/10.1007/s00422-003-0425-7
- Predicting the effects of deep brain stimulation using a reduced coupled oscillator model.PLoS Comput Biol. 2019; 15e1006575https://doi.org/10.1371/journal.pcbi.1006575
- Adaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study.Sci Rep. 2019; 910585https://doi.org/10.1038/s41598-019-47036-4
- Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study.Mov Disord. 2014; 29: 1679-1684https://doi.org/10.1002/mds.25923
- Stimulating at the right time: phase-specific deep brain stimulation.Brain. 2017; 140: 132-145https://doi.org/10.1093/brain/aww286
- Optimized temporal pattern of brain stimulation designed by computational evolution.Sci Transl Med. 2017; 9eaah3532https://doi.org/10.1126/scitranslmed.aah3532
- Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on the i(V e) profile.J Neural Eng. 2016; 13052001https://doi.org/10.1088/1741-2560/13/5/052001
- Computational modeling of deep brain stimulation.Handb Clin Neurol. 2013; 116: 55-61https://doi.org/10.1016/B978-0-444-53497-2.00005-X
- Comprehensive cellular-resolution atlas of the adult human brain.J Comp Neurol. 2016; 524: 3127-3481https://doi.org/10.1002/cne.24080
- Cortical control of zona incerta.J Neurosci. 2007; 27: 1670-1681https://doi.org/10.1523/JNEUROSCI.3768-06.2007
- The Hidden Life of the Basal Ganglia: At the Base of Brain and Mind.The MIT Press, 2021
- Lapicque’s introduction of the integrate-and-fire model neuron (1907).Brain Res Bull. 1999; 50: 303-304https://doi.org/10.1016/s0361-9230(99)00161-6
- A quantitative description of membrane current and its application to conduction and excitation in nerve.J Physiol. 1952; 117: 500-544https://doi.org/10.1113/jphysiol.1952.sp004764
- Branching dendritic trees and motoneuron membrane resistivity.Exp Neurol. 1959; 1: 491-527https://doi.org/10.1016/0014-4886(59)90046-9
- Analysis of a model for excitation of myelinated nerve.IEEE Trans Biomed Eng. 1976; 23: 329-337https://doi.org/10.1109/TBME.1976.324593
- Patient-specific analysis of the volume of tissue activated during deep brain stimulation.NeuroImage. 2007; 34: 661-670https://doi.org/10.1016/j.neuroimage.2006.09.034
- Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.J Neurophysiol. 2004; 91: 1457-1469https://doi.org/10.1152/jn.00989.2003
- Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation.Brain Stimul. 2021; 14: 549-563https://doi.org/10.1016/j.brs.2021.03.009
- Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease.Appl Neurophysiol. 1987; 50: 344-346https://doi.org/10.1159/000100803
- Psychosurgery in older people.J Am Geriatr Soc. 1954; 2: 456-466https://doi.org/10.1111/j.1532-5415.1954.tb02138.x
- U.S. Food and Drug Administration.https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=P960009Date accessed: September 23, 2022
- Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization.Journal de physiologie et de pathologie générale. 1907; 9: 620-635
- Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus.Clin Neurophysiol. 2004; 115: 589-595https://doi.org/10.1016/j.clinph.2003.10.033
- Computational analysis of deep brain stimulation.Expert Rev Med Devices. 2007; 4: 615-622https://doi.org/10.1586/17434440.4.5.615
- Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation.NeuroImage. 2018; 172: 263-277https://doi.org/10.1016/j.neuroimage.2018.01.015
- Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds.IEEE Trans Biomed Eng. 1992; 39: 1244-1254https://doi.org/10.1109/10.184700
- Predicting myelinated axon activation using spatial characteristics of the extracellular field.J Neural Eng. 2011; 8046030https://doi.org/10.1088/1741-2560/8/4/046030
- A driving-force predictor for estimating pathway activation in patient-specific models of deep brain stimulation.Neuromodulation. 2019; 22: 403-415https://doi.org/10.1111/ner.12929
- Analysis of models for external stimulation of axons.IEEE Trans Biomed Eng. 1986; 33: 974-977https://doi.org/10.1109/TBME.1986.325670
- Analysis of a linear model for electrical stimulation of axons--critical remarks on the “activating function concept”.IEEE Trans Biomed Eng. 2001; 48: 173-184https://doi.org/10.1109/10.909638
- Prediction of myelinated nerve fiber stimulation thresholds: limitations of linear models.IEEE Trans Biomed Eng. 2004; 51: 229-236https://doi.org/10.1109/TBME.2003.820382
- Role of electrode design on the volume of tissue activated during deep brain stimulation.J Neural Eng. 2006; 3: 1-8https://doi.org/10.1088/1741-2560/3/1/001
- Relationship between neural activation and electric field distribution during deep brain stimulation.IEEE Trans Biomed Eng. 2015; 62: 664-672https://doi.org/10.1109/TBME.2014.2363494
- Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated.J Neural Eng. 2019; 16066024https://doi.org/10.1088/1741-2552/ab3c95
- Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation.J Neural Eng. 2013; 10056023https://doi.org/10.1088/1741-2560/10/5/056023
- Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions.Brain Stimul. 2010; 3: 65-67https://doi.org/10.1016/j.brs.2010.01.003
- The use of stimulation field models for deep brain stimulation programming.Brain Stimul. 2015; 8: 976-978https://doi.org/10.1016/j.brs.2015.06.005
- Computational modeling and neuroimaging techniques for targeting during deep brain stimulation.Front Neuroanat. 2016; 10: 71https://doi.org/10.3389/fnana.2016.00071
- High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model.J Comput Neurosci. 2004; 16: 211-235https://doi.org/10.1023/B:JCNS.0000025686.47117.67
- Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.J Neurophysiol. 2006; 96: 1569-1580https://doi.org/10.1152/jn.00305.2006
- Technology of deep brain stimulation: current status and future directions.Nat Rev Neurol. 2021; 17: 75-87https://doi.org/10.1038/s41582-020-00426-z
- Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies.Front Neurol. 2019; 10: 410https://doi.org/10.3389/fneur.2019.00410
- Neurohistopathological findings at the electrode-tissue interface in long-term deep brain stimulation: systematic literature review, case report, and assessment of stimulation threshold safety.Neuromodulation. 2014; 17 ([discussion: 418]): 405-418https://doi.org/10.1111/ner.12192
- Variation in reported human head tissue electrical conductivity values.Brain Topogr. 2019; 32: 825-858https://doi.org/10.1007/s10548-019-00710-2
- High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain.Brain Struct Funct. 2020; 225: 1277-1291https://doi.org/10.1007/s00429-019-01961-2
- Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses.IEEE Trans Biomed Eng. 1990; 37: 1118-1120https://doi.org/10.1109/10.61038
- Principles of electrical stimulation of neural tissue.Handb Clin Neurol. 2013; 116: 3-18https://doi.org/10.1016/B978-0-444-53497-2.00001-2
- Finite element analysis of the current-density and electric field generated by metal microelectrodes.Ann Biomed Eng. 2001; 29: 227-235https://doi.org/10.1114/1.1352640
- A review of organic and inorganic biomaterials for neural interfaces.Adv Mater. 2014; 26: 1846-1885https://doi.org/10.1002/adma.201304496
- Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.Clin Neurophysiol. 2005; 116: 2490-2500https://doi.org/10.1016/j.clinph.2005.06.023
- Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.Exp Neurol. 2009; 216: 166-176https://doi.org/10.1016/j.expneurol.2008.11.024
- The rationale driving the evolution of deep brain stimulation to constant-current devices.Neuromodulation. 2015; 18 ([discussion: 88–89]): 85-88https://doi.org/10.1111/ner.12227
- Computational investigation of the impact of deep brain stimulation contact size and shape on neural selectivity.J Neural Eng. 2021; 18https://doi.org/10.1088/1741-2552/abeeaa
- Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.J Neural Eng. 2015; 12046030https://doi.org/10.1088/1741-2560/12/4/046030
- High efficiency electrodes for deep brain stimulation.Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009: 3298-3301https://doi.org/10.1109/IEMBS.2009.5333774
- Evaluation of high-perimeter electrode designs for deep brain stimulation.J Neural Eng. 2014; 11046026https://doi.org/10.1088/1741-2560/11/4/046026
- Sources and effects of electrode impedance during deep brain stimulation.Clin Neurophysiol. 2006; 117: 447-454https://doi.org/10.1016/j.clinph.2005.10.007
- Current steering to control the volume of tissue activated during deep brain stimulation.Brain Stimul. 2008; 1: 7-15https://doi.org/10.1016/j.brs.2007.08.004
- Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region.Brain Stimul. 2012; 5: 369-377https://doi.org/10.1016/j.brs.2011.05.002
- Spatial steering of deep brain stimulation volumes using a novel lead design.Clin Neurophysiol. 2011; 122: 558-566https://doi.org/10.1016/j.clinph.2010.07.026
- Neural selectivity, efficiency, and dose equivalence in deep brain stimulation through pulse width tuning and segmented electrodes.Brain Stimul. 2020; 13: 1040-1050https://doi.org/10.1016/j.brs.2020.03.017
- Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T.NeuroImage. 2021; 224117357https://doi.org/10.1016/j.neuroimage.2020.117357
- Directional DBS increases side-effect thresholds-a prospective, double-blind trial.Mov Disord. 2017; 32: 1380-1388https://doi.org/10.1002/mds.27093
- Emerging technologies for improved deep brain stimulation.Nat Biotechnol. 2019; 37: 1024-1033https://doi.org/10.1038/s41587-019-0244-6
- Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters.J Parkinsons Dis. 2017; 7: 235-245https://doi.org/10.3233/JPD-171077
- The impact on Parkinson’s disease of electrical parameter settings in STN stimulation.Neurology. 2002; 59: 706-713https://doi.org/10.1212/wnl.59.5.706
- Deep brain stimulation creates an informational lesion of the stimulated nucleus.Neuroreport. 2004; 15: 1137-1140https://doi.org/10.1097/00001756-200405190-00011
- Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation.Brain Stimul. 2018; 11: 1140-1150https://doi.org/10.1016/j.brs.2018.05.008
- Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.J Comput Neurosci. 2010; 28: 425-441https://doi.org/10.1007/s10827-010-0225-8
- Origins and suppression of oscillations in a computational model of Parkinson’s disease.J Comput Neurosci. 2014; 37: 505-521https://doi.org/10.1007/s10827-014-0523-7
- Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.Clin Neurophysiol. 2010; 121: 2128-2133https://doi.org/10.1016/j.clinph.2010.04.026
- Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease.Mov Disord. 2006; 21: S284-S289https://doi.org/10.1002/mds.20961
- Longitudinal follow-up of impedance drift in deep brain stimulation cases.Tremor Other Hyperkinet Mov (N Y). 2018; 8: 542https://doi.org/10.7916/D8M62XTC
- Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study.Lancet Neurol. 2020; 19: 491-501https://doi.org/10.1016/S1474-4422(20)30108-3
- Excitation of central nervous system neurons by nonuniform electric fields.Biophys J. 1999; 76: 878-888https://doi.org/10.1016/S0006-3495(99)77251-6
- The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity.Brain Stimul. 2020; 13: 1183-1195https://doi.org/10.1016/j.brs.2020.05.009
- Assessing the direct effects of deep brain stimulation using embedded axon models.J Neural Eng. 2007; 4: 107-119https://doi.org/10.1088/1741-2560/4/2/011
- Energy efficient neural stimulation: coupling circuit design and membrane biophysics.PLoS One. 2012; 7e51901https://doi.org/10.1371/journal.pone.0051901
- Less is more - Pulse width dependent therapeutic window in deep brain stimulation for essential tremor.Brain Stimul. 2018; 11: 1132-1139https://doi.org/10.1016/j.brs.2018.04.019
- Short pulse width in subthalamic stimulation in Parkinson’s disease: a randomized, double-blind study.Mov Disord. 2018; 33: 169-173https://doi.org/10.1002/mds.27265
- Selective microstimulation of central nervous system neurons.Ann Biomed Eng. 2000; 28: 219-233https://doi.org/10.1114/1.262
- Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation.J Neural Eng. 2019; 16016026https://doi.org/10.1088/1741-2552/aae590
- A quantitative study of electrical stimulation of central myelinated fibers.Exp Neurol. 1969; 24: 147-170https://doi.org/10.1016/0014-4886(69)90012-0
- Anodic versus cathodic neurostimulation of the subthalamic nucleus: a randomized-controlled study of acute clinical effects.Parkinsonism Relat Disord. 2018; 55: 61-67https://doi.org/10.1016/j.parkreldis.2018.05.015
- Square biphasic pulse deep brain stimulation for essential tremor: the BiP tremor study.Parkinsonism Relat Disord. 2018; 46: 41-46https://doi.org/10.1016/j.parkreldis.2017.10.015
- Brief, noninjurious electric waveform for stimulation of the brain.Science. 1955; 121: 468-469https://doi.org/10.1126/science.121.3144.468
- Electrical stimulation of excitable tissue: design of efficacious and safe protocols.J Neurosci Methods. 2005; 141: 171-198https://doi.org/10.1016/j.jneumeth.2004.10.020
- Monophasic but not biphasic pulses induce brain tissue damage during monopolar high-frequency deep brain stimulation.Neurosurgery. 2009; 64 ([discussion: 162–163]. https://dx.doi.org/10.1227/01.NEU.0000336331.88559.CF): 156-162
- In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice.J Neurosci Res. 2020; 98: 2072-2095https://doi.org/10.1002/jnr.24676
- Modified pulse shapes for effective neural stimulation.Front Neuroeng. 2011; 4: 9https://doi.org/10.3389/fneng.2011.00009
- Evaluation of novel stimulus waveforms for deep brain stimulation.J Neural Eng. 2010; 7066008https://doi.org/10.1088/1741-2560/7/6/066008
- Mechanical and biological interactions of implants with the brain and their impact on implant design.Front Neurosci. 2016; 10: 11https://doi.org/10.3389/fnins.2016.00011
- The active electrode in the living brain: the response of the brain parenchyma to chronically implanted deep brain stimulation electrodes.Oper Neurosurg (Hagerstown). 2021; 20: 131-140https://doi.org/10.1093/ons/opaa326
- The impact of chronic blood–brain barrier breach on intracortical electrode function.Biomaterials. 2013; 34: 4703-4713https://doi.org/10.1016/j.biomaterials.2013.03.007
- The influence of reactivity of the electrode–brain interface on the crossing electric current in therapeutic deep brain stimulation.Neuroscience. 2008; 156: 597-606https://doi.org/10.1016/j.neuroscience.2008.07.051
- Understanding the effects and adverse reactions of deep brain stimulation: is it time for a paradigm shift toward a focus on heterogenous biophysical tissue properties instead of electrode design only?.Front Hum Neurosci. 2018; 12: 468https://doi.org/10.3389/fnhum.2018.00468
- Conductivity of living intracranial tissues.Phys Med Biol. 2001; 46: 1611-1616https://doi.org/10.1088/0031-9155/46/6/302
- Detection of microscopic anisotropy in gray matter and in a novel tissue phantom using double Pulsed Gradient Spin Echo MR.J Magn Reson. 2007; 189: 38-45https://doi.org/10.1016/j.jmr.2007.07.003
- Specific impedance of cerebral white matter.Exp Neurol. 1965; 13: 386-401https://doi.org/10.1016/0014-4886(65)90126-3
- Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.J Neural Eng. 2016; 13036023https://doi.org/10.1088/1741-2560/13/3/036023
- Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis.Radiology. 1999; 212: 770-784https://doi.org/10.1148/radiology.212.3.r99au51770
- Conductivity tensor mapping of the human brain using diffusion tensor MRI.Proc Natl Acad Sci U S A. 2001; 98: 11697-11701https://doi.org/10.1073/pnas.171473898
- Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties.IEEE Trans Biomed Eng. 1999; 46: 918-928https://doi.org/10.1109/10.775401
- Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.Biomed Eng Online. 2021; 20: 29https://doi.org/10.1186/s12938-021-00869-5
- A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease.Appl Math Mech. 2020; 41: 1747-1768https://doi.org/10.1007/s10483-020-2689-9
- Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states.J Theor Biol. 2009; 257: 642-663https://doi.org/10.1016/j.jtbi.2008.12.018
- Chemical Oscillations, Waves, and Turbulence.19. Springer, 1984https://doi.org/10.1007/978-3-642-69689-3
- Computational neurostimulation for Parkinson’s disease.Prog Brain Res. 2015; 222: 163-190https://doi.org/10.1016/bs.pbr.2015.09.002
- Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects.Front Comput Neurosci. 2013; 7: 94https://doi.org/10.3389/fncom.2013.00094
- Computational modelling of the long-term effects of brain stimulation on the local and global structural connectivity of epileptic patients.PLoS One. 2020; 15e0221380https://doi.org/10.1371/journal.pone.0221380
- A computational model of major depression: the role of glutamate dysfunction on cingulo-frontal network dynamics.Cereb Cortex. 2017; 27: 660-679https://doi.org/10.1093/cercor/bhv249
- The functional anatomy of basal ganglia disorders.Trends Neurosci. 1989; 12: 366-375https://doi.org/10.1016/0166-2236(89)90074-X
- Mechanisms of deep brain stimulation and future technical developments.Neurol Res. 2000; 22: 259-266https://doi.org/10.1080/01616412.2000.11740668
- Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.Eur J Neurosci. 2012; 36: 2240-2251https://doi.org/10.1111/j.1460-9568.2012.08085.x
- Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement.Proc Natl Acad Sci USA. 2015; 112: E586-E595https://doi.org/10.1073/pnas.1406549111
- Deep brain stimulation: is it time to change gears by closing the loop?.J Neural Eng. 2021; 18https://doi.org/10.1088/1741-2552/ac3267
- Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model.J Neural Eng. 2007; 4: L14-L21https://doi.org/10.1088/1741-2560/4/2/L03
- Model-based evaluation of closed-loop deep brain stimulation controller to adapt to dynamic changes in reference signal.Front Neurosci. 2019; 13: 956https://doi.org/10.3389/fnins.2019.00956
- Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease.Front Neurosci. 2020; 14: 166https://doi.org/10.3389/fnins.2020.00166
- Adaptive parameter modulation of deep brain stimulation based on improved supervisory algorithm.Front Neurosci. 2021; 15750806https://doi.org/10.3389/fnins.2021.750806
- Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation.PLoS One. 2017; 12e0173363https://doi.org/10.1371/journal.pone.0173363
- Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases.Sci Rep. 2017; 7: 1033https://doi.org/10.1038/s41598-017-01067-x
- Multisite delayed feedback for electrical brain stimulation.Front Physiol. 2018; 9: 46https://doi.org/10.3389/fphys.2018.00046
- A comprehensive review of brain connectomics and imaging to improve deep brain stimulation outcomes.Mov Disord. 2020; 35: 741-751https://doi.org/10.1002/mds.28045
- Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology and novel approaches.Front Neurol. 2022; 13825178https://doi.org/10.3389/fneur.2022.825178
- Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease.NeuroImage. 2017; 158: 332-345https://doi.org/10.1016/j.neuroimage.2017.07.012
- Connectivity Predicts deep brain stimulation outcome in Parkinson disease.Ann Neurol. 2017; 82: 67-78https://doi.org/10.1002/ana.24974
- Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus.NeuroImage Clin. 2018; 20: 1266-1273https://doi.org/10.1016/j.nicl.2018.10.009
- StimVision software: examples and applications in subcallosal cingulate deep brain stimulation for depression.Neuromodulation. 2018; 21: 191-196https://doi.org/10.1111/ner.12625
- Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome.Brain. 2020; 143: 2607-2623https://doi.org/10.1093/brain/awaa188
- Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes.Neurosurg Focus. 2018; 45: E7https://doi.org/10.3171/2018.5.FOCUS18151
- Optimal deep brain stimulation site and target connectivity for chronic cluster headache.Neurology. 2017; 89: 2083-2091https://doi.org/10.1212/WNL.0000000000004646
- Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia.Proc Natl Acad Sci USA. 2022; 119e2114985119https://doi.org/10.1073/pnas.2114985119
- Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer’s disease.Nat Commun. 2022; 13: 7707https://doi.org/10.1038/s41467-022-34510-3
- A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression.Mol Psychiatry. 2018; 23: 843-849https://doi.org/10.1038/mp.2017.59
- Personalized striatal targets for deep brain stimulation in obsessive-compulsive disorder.Brain Stimul. 2019; 12: 724-734https://doi.org/10.1016/j.brs.2018.12.226
- Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining.Brain Stimul. 2019; 12: 1345-1348https://doi.org/10.1016/j.brs.2019.07.014
- Normative vs. patient-specific brain connectivity in deep brain stimulation.NeuroImage. 2021; 224117307https://doi.org/10.1016/j.neuroimage.2020.117307
- Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system.Acta Neurochir Suppl. 2007; 97: 561-567https://doi.org/10.1007/978-3-211-33081-4_65
- Reversing cognitive-motor impairments in Parkinson’s disease patients using a computational modelling approach to deep brain stimulation programming.Brain. 2010; 133: 746-761https://doi.org/10.1093/brain/awp315
- Evaluation of interactive visualization on mobile computing platforms for selection of deep brain stimulation parameters.IEEE Trans Vis Comput Graph. 2013; 19: 108-117https://doi.org/10.1109/TVCG.2012.92
- Model-based deep brain stimulation programming for Parkinson’s disease: the GUIDE pilot study.Stereotact Funct Neurosurg. 2015; 93: 231-239https://doi.org/10.1159/000375172
- Reduced programming time and strong symptom control even in chronic course through imaging-based DBS programming.Front Neurol. 2021; 12785529https://doi.org/10.3389/fneur.2021.785529
- Imaging-based programming of subthalamic nucleus deep brain stimulation in Parkinson’s disease.Brain Stimul. 2021; 14: 1109-1117https://doi.org/10.1016/j.brs.2021.07.064
- Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study.Brain. 2019; 142: 1386-1398https://doi.org/10.1093/brain/awz046
- Comparison between patient-specific deep brain stimulation simulations and commercial system SureTune3.Biomed Phys Eng Express. 2021; 7https://doi.org/10.1088/2057-1976/ac0dcd
- Traditional trial and error versus neuroanatomic 3-dimensional image software-assisted deep brain stimulation programming in patients with Parkinson disease.World Neurosurg. 2020; 134: e98-e102https://doi.org/10.1016/j.wneu.2019.09.106
- Patient-specific simulations of deep brain stimulation electric field with aid of in-house software ELMA.Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 5212-5216https://doi.org/10.1109/EMBC.2019.8856307
- Distribution of electric field in patients with obsessive compulsive disorder treated with deep brain stimulation of the bed nucleus of stria terminalis.Acta Neurochir (Wien). 2022; 164: 193-202https://doi.org/10.1007/s00701-021-04991-0
- OSS-DBS: open-source simulation platform for deep brain stimulation with a comprehensive automated modeling.PLoS Comput Biol. 2020; 16e1008023https://doi.org/10.1371/journal.pcbi.1008023
- Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging.NeuroImage. 2019; 184: 293-316https://doi.org/10.1016/j.neuroimage.2018.08.068
- A method to estimate the spatial extent of activation in thalamic deep brain stimulation.Clin Neurophysiol. 2008; 119: 2148-2158https://doi.org/10.1016/j.clinph.2008.02.025
- Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue.AJNR Am J Neuroradiol. 2012; 33: 1072-1080https://doi.org/10.3174/ajnr.A2906
- Probabilistic mapping of deep brain stimulation effects in essential tremor.NeuroImage Clin. 2017; 13: 164-173https://doi.org/10.1016/j.nicl.2016.11.019
- Programming of subthalamic nucleus deep brain stimulation for Parkinson’s disease with sweet spot-guided parameter suggestions.Front Hum Neurosci. 2022; 16925283https://doi.org/10.3389/fnhum.2022.925283
- Connectomic analysis of unilateral dual-lead thalamic deep brain stimulation for treatment of multiple sclerosis tremor.Brain Commun. 2022; 4: fcac063https://doi.org/10.1093/braincomms/fcac063
- Lead-OR: a multimodal platform for deep brain stimulation surgery.eLife. 2022; 11e72929https://doi.org/10.7554/eLife.72929
- PaCER - a fully automated method for electrode trajectory and contact reconstruction in deep brain stimulation.Neuroimage Clin. 2017; 17: 80-89https://doi.org/10.1016/j.nicl.2017.10.004
- DBSproc: an open source process for DBS electrode localization and tractographic analysis.Hum Brain Mapp. 2016; 37: 422-433https://doi.org/10.1002/hbm.23039
- Tractography patterns of subthalamic nucleus deep brain stimulation.Brain. 2016; 139: 1200-1210https://doi.org/10.1093/brain/aww020
- Home health management of Parkinson disease deep brain stimulation: a randomized clinical trial.JAMA Neurol. 2021; 78: 972-981https://doi.org/10.1001/jamaneurol.2021.1910
- Interactive computation and visualization of deep brain stimulation effects using Duality.Comput Methods Biomech Biomed Eng Imaging Vis. 2020; 8: 3-14https://doi.org/10.1080/21681163.2018.1484817
- FastField: an open-source toolbox for efficient approximation of deep brain stimulation electric fields.NeuroImage. 2020; 223117330https://doi.org/10.1016/j.neuroimage.2020.117330
- Deep brain stimulation of the ventral intermediate nucleus of the thalamus in writer’s cramp: a case report.Tremor Other Hyperkinet Mov (N Y). 2021; 11: 46https://doi.org/10.5334/tohm.645
- Selecting the most effective DBS contact in essential tremor patients based on individual tractography.Brain Sci. 2020; 10: 1015https://doi.org/10.3390/brainsci10121015
- Impressive weight gain after deep brain stimulation of nucleus accumbens in treatment-resistant bulimic anorexia nervosa.BMJ Case Rep. 2020; 13e239316https://doi.org/10.1136/bcr-2020-239316
- StimVision v2: examples and applications in subthalamic deep brain stimulation for Parkinson’s disease.Neuromodulation. 2021; 24: 248-258https://doi.org/10.1111/ner.13350
- Stimulation maps: visualization of results of quantitative intraoperative testing for deep brain stimulation surgery.Med Biol Eng Comput. 2020; 58: 771-784https://doi.org/10.1007/s11517-020-02130-y
- Optimized programming algorithm for cylindrical and directional deep brain stimulation electrodes.J Neural Eng. 2018; 15026005https://doi.org/10.1088/1741-2552/aaa14b
Comments
Article info
Publication history
Publication stage
In Press Corrected ProofFootnotes
Conflict of Interest: Cameron C. McIntyre is a paid consultant for Boston Scientific Neuromodulation, receives royalties from Hologram Consultants, Neuros Medical, and Qr8 Health, and is a shareholder in the following companies: Hologram Consultants, Surgical Information Sciences, BrainDynamics, CereGate, Autonomic Technologies, Cardionomic, and Enspire DBS. The remaining authors reported no conflict of interest.
Source(s) of financial support: The authors reported no funding sources.